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Abstract

This thesis proves the existence of constant scalar curvature Kähler metrics

on certain connected compact complex surfaces. The surfaces considered

are those admitting a holomorphic submersion to curve, with fibres of genus

at least 2. The proof is via an adiabatic limit. An approximate solution is

constructed out of the hyperbolic metrics on the fibres and a large multiple

of a certain metric on the base. A parameter dependent inverse function the-

orem is then used to perturb the approximate solution to a genuine solution

in the same cohomology class.
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This thesis proves the existence of constant scalar curvature Kähler metrics

on certain compact connected complex surfaces. The surfaces under consid-

eration are those which admit a holomorphic submersion π : X → Σ onto

a complex curve. Moreover, it is assumed that the fibres of π have high

genus (i.e. greater than 1). That π is a surjective submersion says simply

that, as a smooth manifold, X is a surface bundle over a surface. Since π is

holomorphic, the fibres of π are all complex submanifolds. It is important to

note that the complex structure of the fibres will, in general, vary. Examples

of such surfaces will be given later (see section 1.2).

The first observation to make is that the hypotheses on X guarantee that

it is projective. The dual of the vertical tangent bundle is a holomorphic

line bundle whose fibrewise restriction is positive. It may not be positive

transverse to the fibres. Adding a high power of a positive bundle pulled up

from the base, however, gives a positive holomorphic line bundle, showing

that X is projective. (An actual proof of the positivity of this line bundle is

given in Lemma 4.1.) Denoting the vertical tangent bundle by V , the ample

classes described here are of the form

κr = −2π (c1(V ) + rc1(Σ))

for large enough r. In the discussion of projectivity, it is necessary to take

r to be a positive integer so that κr is an integral class. When r is a large

positive real number, however, κr is still a Kähler class.

The precise result proved in this thesis is:

Theorem 1.1. If X is a compact connected complex surface admitting a

holomorphic submersion onto a complex curve with fibres of genus at least

two, then, for all large r, the Kähler class κr contains a constant scalar

curvature Kähler metric.

The arguments should also apply more generally to higher dimensional

fibred Kähler manifolds, although the conditions are more awkward to state.

The higher dimensional version of Theorem 1.1 is stated in Chapter 9 (see

Conjecture 9.1).

Section 1.1 motivates the search for constant scalar curvature metrics;

Section 1.2 provides examples of surfaces to which Theorem 1.1 applies.

Section 1.3 discusses the main analytic technique, the adiabatic limit, and

explains other related results where this technique has been applied. Section
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1.4 gives an overview of the proof of Theorem 1.1. Chapter 2 reviews results

about constant scalar curvature metrics on high genus curves. In Chapter

3, general properties of scalar curvature are discussed. In Chapter 4, fami-

lies of approximate solutions are constructed. Chapters 5, 6, 7 and 8 carry

out the adiabatic limit which shows that these approximate solutions can

be perturbed to genuine solutions. Finally, Chapter 9 discusses the difficul-

ties in generalising the proof of Theorem 1.1 to include higher dimensional

manifolds and manifolds admitting fibrations with singular fibres.

1.1 Constant scalar curvature metrics

In this section four related reasons are given for studying constant scalar

curvature Kähler metrics.

1.1.1 Complex curves

The classical correspondence between constant scalar curvature metrics

and complex structures plays a prominent role in the study of Riemann

surfaces. This leads to, among other things, a geometric realisation of the

complex moduli for curves. For example, in the high genus case, the moduli

can be thought of as the lengths of 3g− 3 hyperbolic geodesics splitting the

curve up into rigid pieces (with three cylindrical ends, homeomorphic to a

sphere punctured in three places) and the size of the twists applied before

putting the pieces back together (6g − 6 real parameters in total).

This correspondence motivates the idea that constant scalar curvature

Kähler metrics may be of use in algebraic geometry. The precise context in

which such metrics should be important is described below in section 1.1.4.

The existence and uniqueness of constant scalar curvature metrics on

compact high genus curves will be discussed in more detail in Chapter 2.

1.1.2 Extremal metrics

In [Cal82] and [Cal85] Calabi studies the functional which associates to

each Kähler metric the L2-norm of its scalar curvature. The Euler-Lagrange

equations show that the critical points of this functional (when restricted to

a single cohomology class) are metrics ω satisfying

∂̄ (∇ Scal(ω)) = 0,

i.e. those for which the gradient of the scalar curvature defines a holomorphic

vector field. Such metrics are called extremal. In particular, constant scalar
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curvature Kähler metrics are extremal. It might be hoped that extremal

metrics provide “canonical” representatives of a given Kähler class.

1.1.3 Kähler-Einstein metrics

A Kähler metric on a complex manifold X is said to be Kähler-Einstein

if the Ricci form ρ and the Kähler form ω are proportional,

ρ = λω

(where λ is a constant). There is an obvious topological condition which

must be satisfied for such metrics to exist: the corresponding cohomology

classes must be equal; i.e. the Kähler class [ω] must satisfy

λ[ω] = 2πc1(X).

If ω is Kähler-Einstein, it follows from taking traces that ω has constant

scalar curvature. It is also true that, assuming the topological condition

is met, a constant scalar curvature Kähler metric is Kähler-Einstein. This

follows from Hodge theory. The Kähler identity [Λ, ∂] = i∂̄∗ shows that the

scalar curvature S and the Ricci form ρ are related by ∂̄∗ρ = i∂S. Since ρ

is also closed, constant scalar curvature implies ρ is harmonic. As ρ and λω

are two harmonic representatives for the same cohomology class they must

be equal. This shows that constant scalar curvature Kähler metrics are a

generalisation of Kähler-Einstein metrics which can exist in Kähler classes

which are not multiples of the first Chern class.

A great deal of work has been done on determining which manifolds

admit Kähler-Einstein metrics. As is remarked above, a necessary condition

is that the manifold have definite or zero first Chern class. Aubin’s work

on the complex Monge-Ampère equations [Aub78] proves that all complex

manifolds X with c1(X) < 0 are Kähler-Einstein. In [Yau78], Yau proves

the same result for manifolds with c1(X) = 0. The hardest case is c1(X) > 0

(Fano varieties). Examples of such manifolds with no Kähler-Einstein metric

are known (e.g. P
2 blown up at a point). A large amount of work has been

done in this direction by Tian (see, for example, [Tia00]) culminating in a

necessary and sufficient condition for a Fano surface to be Kähler-Einstein,

namely that its automorphism group be reductive. In higher dimensions this

is known to be necessary, but not sufficient. The following section discusses

a conjecture which, if true, would give a necessary and sufficient condition
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for the existence of a constant scalar curvature metric in a given Kähler

class.

1.1.4 Stably polarised varieties

Before discussing the relationship between stably polarised varieties and

constant scalar curvature Kähler metrics the analogous concepts from the

study of holomorphic bundles are described.

A Hermitian structure in a holomorphic bundle E → (X,ω) over a com-

pact Kähler manifold is said to be Hermitian-Einstein if the curvature F of

the induced connection satisfies F ∧ ωn−1 = Cωn for some constant C.

Given a coherent sheaf F on X, the slope of F is defined to be

µ(F ) =
deg(F )

rank(F )
=

1

rank(F )

∫

X
c1(F ) ∧ ωn−1.

A holomorphic bundle E is said to be slope-stable if, whenever F is a co-

herent subsheaf of E, µ(F ) < µ(E).

The Hitchin-Kobayashi correspondence for holomorphic vector bundles

over a Kähler manifold (X,ω) relates the slope stability of the bundle to the

existence of a Hermitian-Einstein structure. More precisely, an indecompos-

able holomorphic bundle E → X is slope-stable if, and only if, there exists

a Hermitian-Einstein structure in E. This is remarkable since it shows that

an a priori analytic problem (solving the Hermitian-Einstein PDE) is equiv-

alent to an a priori algebro-geometric problem (finding coherent subsheaves

and computing their slopes). Over curves, this was proved by Narasimhan

and Seshadri [NS65] (see also [Don83] for an alternative proof), over al-

gebraic surfaces by Donaldson [Don85] and over general compact Kähler

manifolds by Uhlenbeck and Yau [UY86].

An analogous conjecture has been made for varieties themselves. If

(X,L) is a polarised variety, the embedding is conjectured to be “stable” if,

and only if, the class 2πc1(L) contains a constant scalar curvature Kähler

metric. (This conjecture was first stated by Yau [Yau93] in the Fano, Kähler-

Einstein case, L = K∗
X , by Tian [Tia97] in the constant scalar curvature

case, and, later, by Donaldson in the more general framework of symplectic

geometry [Don97].) There are competing definitions of stable here. One

definition, based on degenerations of (X,L), and called K-stable, is given by

Tian in [Tia00] and slightly altered by Donaldson in [Don02b]. An alterna-

tive definition, called slope-stable and similar to slope-stability for bundles,
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has recently appeared in [RT03]. It is known, for example, that K-stability

implies slope-stability [RT03] and that the existence of a constant scalar

curvature metric implies K-stability (as was recently announced by Chen

and Tian).

This conjecture is thought to be the correct generalisation of the corre-

spondence between complex structures on curves and constant scalar cur-

vature metrics mentioned above in 1.1.1. It might be hoped that constant

scalar curvature metrics will be of as much use in studying stably polarised

varieties as they are in studying Riemann surfaces. In order for this idea to

work, and since “most” polarised varieties are stable, most varieties should

admit constant scalar curvature metrics. Yet, except for the case of Kähler-

Einstein metrics, few existence theorems are known. This thesis is a small

attempt to remedy this situation.

1.2 Fibred complex surfaces

This section gives examples of surfaces for which Theorem 1.1 applies. It

also gives examples of some particularly simple fibred complex surfaces for

which finding constant scalar curvature metrics is straightforward.

1.2.1 Examples of fibred complex surfaces

Fibred complex surfaces with singular fibres are commonplace, e.g. holo-

morphic Lefschetz fibrations. Indeed any algebraic surface is birational to

such a surface. The non-singular fibrations dealt with here, however, are

harder to find. In [Ati69] and [Kod67] Atiyah and Kodaira independently

give examples of such surfaces. Their construction is reviewed here.

Let C be a curve with a fixed-point free, holomorphic, involution τ : C →

C. That is, C is an unramified double covering of a curve C ′. These exist

provided that C ′ is not the Riemann sphere. To see this, take two copies of

C ′, and cut both along a curve defining a generator of π1(C
′). Then glue

the two copies together so that one side of the cut on one copy is attached

to the other side of the cut on the other copy.

In order to ensure that the surface produced is a non-trivial fibre bundle,

let the genus g′ of C ′ be at least 2. This means that the genus of C,

g = 2g′ − 1, is at least 3.

Next consider the homomorphism

π1(C) → H1(C; Z) → H1(C; Z2),
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obtained by abelianising the fundamental group and reducing coefficients

modulo 2. Write K for its kernel. Factoring out the universal cover of C by

K produces a 4g-fold covering f : Σ → C.

The idea is to construct the required surface X as a double cover of Σ×C

ramified along the graphs of f and τf . The following lemma will be helpful

in this respect.

Lemma 1.2. Any double cover of C becomes trivial when pulled back to Σ

via f : Σ → C. Equivalently, the induced homomorphism f∗1 : H1(C; Z2) →

H1(Σ; Z2) is zero.

Proof. The two statements are equivalent since double covers are classified

by H1 with coefficients in Z2. A double cover of C corresponds to a ho-

momorphism φ : π1(C) → Z2. As Z2 is abelian, the homomorphism factors

through H1(C; Z). Since the image of K under the map π1(C) → H1(C; Z2)

consists of elements of the form 2a, K ⊂ kerφ. This completes the proof.

Consider the graphs γf and γτf of f and τf in Σ × C. The following

calculation shows that the sum of their homology classes is even.

Lemma 1.3. [γf ] + [γτf ] = 0 in H2(Σ × C; Z2).

Proof. It suffices to prove the Poincaré dual is zero in H2 (working through-

out with coefficients in Z2). Combining the Künneth formula and Poincaré

duality gives

H2(Σ × C) ∼=
⊕

Hom
(
H i(C),H i(Σ)

)
.

Under this isomorphism, PD[γf ] =
∑
f∗i where f∗i is the homomorphism

H i(C) → H i(Σ) induced by f . Certainly f∗0 = 1 and f∗2 = deg f(mod 2) = 0.

Similarly (τf)∗0 = 1 and (τf)∗2 = 0. It follows from the previous result that

f∗1 = 0. Also (τf)∗1 = f∗1 τ
∗
1 = 0 proving the lemma.

This lemma implies the existence of the required double cover X → Σ×C

ramified along γf and γτf . One way to see this is to consider the line bundle

L associated to the divisor γf + γτf . Since the divisor is even, there exists

a line bundle L′ such that L′2 = L. L admits a section which vanishes

precisely along γf + γτf . Define X to be the inverse image of this section

under the squaring map L′ → L.

The composite holomorphic projection

X → Σ × C → Σ,
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shows that X is a complex surface of the required type. The fibre over σ is

the double cover of C ramified at f(σ) and τf(σ) and so is a non-singular

curve with genus twice that of C. From this description it is clear that the

complex structures of the fibres are varying. Hence X is not biholomor-

phic to the product of two curves, at least not in a way that preserves the

projection to Σ. (This follows from the fact that g > 1 so the group of

biholomorphisms of C is not transitive.)

One of the original motivations for Atiyah and Kodaira’s construction

was to provide an example of a fibre bundle with non zero signature. As is

noted in [Ati69], the signature of a fibred complex surface and the amount

by which the moduli of the fibres vary are closely related. This is discussed

below. In particular the varying moduli of the fibres of X implies X has

strictly positive signature. Since the signature of a product of curves is

zero, this means that X is not even diffeomorphic (or even homotopic) to

a product of curves. It provides an interesting example of the surfaces

considered in this thesis.

1.2.2 The signature of fibred complex surfaces

Let π : X → Σ be a surjective holomorphic submersion from a compact

complex surface to a curve, with fibres of genus g ≥ 2. Hirzebruch’s signature

formula says that the signature of X is given by p1(X)/3. Calculating the

total Pontrjagin class gives

p(X) = p(V ) · π∗p(Σ) = 1 + c1(V )2.

where V is the vertical tangent bundle. So the signature is given by

τ(X) =
1

3

∫

X
c1(V )2 =

1

3

∫

Σ
π∗
(
c1(V )2

)
.

The class π∗(c1(V )2) has an interpretation in terms of the geometry of

the moduli of curves. The surface X determines a map f : Σ → M to the

moduli space of curves of genus g. [HM98] describes certain tautological

classes αi on M . The class αi ∈ H2i(M ; Z) is essentially π∗(c1(V )i+1)

where V is the vertical tangent bundle of the universal curve (the problem

with this being that the universal curve doesn’t exist, at least not as a

smooth fibre bundle over M ). From this it follows that π∗(c1(V )2) = f∗α1

and hence,

τ(X) =
1

3
〈α1, f∗[Σ]〉.
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The class α1 is well known to be ample (a fact proved, for example, in

[HM98]). The above discussion shows that this can be restated in terms of

the signature of X as follows:

Theorem 1.4. Let π : X → Σ be a compact connected complex surface

admitting a holomorphic submersion to a curve, with fibres of genus at least

2. Then the class π∗(c1(V )2) is the pull back of an ample class from the

moduli space of curves, via the natural map Σ → M .

Equivalently, the signature of X is non-negative. It is strictly positive if,

and only if, the fibres of X have varying moduli.

As far as this thesis is concerned, this result is not only used for showing

that Atiyah and Kodaira’s construction produces nontrivial fibre bundles.

It will prove essential in the analysis in later sections.

1.2.3 Ruled manifolds

A ruled complex manifold X is one admitting a proper surjective holo-

morphic submersion X → B for which the fibres are all projective spaces.

For such manifolds, a theorem analogous to Theorem 1.1 has been proved

by Hong in [Hon98] and [Hon99].

If π : E → B is a holomorphic bundle over a smooth projective variety,

projectivising gives a ruled manifold P(E). The pullback π∗E → P(E)

has a tautologically defined rank one subbundle. The dual of this bundle,

denoted H, is positive when restricted to the fibres of P(E). Adding a large

enough multiple of a positive bundle pulled up from the base gives a positive

holomorphic line bundle on P(E) showing that it is projective. If the base is

only Kähler, this procedure still defines Kähler classes on P(E). They have

the form

κr = 2πc1(H) + rκB

for large positive real r, where κB is a Kähler class on the base. The precise

result proved in [Hon98], [Hon99] is:

Theorem 1.5 (Hong). Let E → B be a simple holomorphic vector bundle

over a compact complex manifold B. Assume that B admits a constant

scalar curvature Kähler metric ω and that E has a Hermitian metric which

is Einstein with respect to ω. Assume, moreover, that there are no nontrivial

deformations of ω through cohomologous constant scalar curvature metrics.
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Then, for all large r, the Kähler classes on P(E)

κr = 2πc1(H) + r[ω]

contain constant scalar curvature Kähler metrics.

The proof of Hong’s theorem is similar to that used here to prove Theo-

rem 1.1. The differences are discussed below. In the case of manifolds ruled

over curves (in particular ruled surfaces), however, a straightforward proof

can be given. The following argument is from [BDB88].

Theorem 1.6. Let E → Σ be a holomorphic bundle over a curve with a flat

Hermitian metric. Then P(E) admits a constant scalar curvature Kähler

metric.

Remark. To compare this with the previous result note that over a curve

the Einstein condition on a degree zero bundle is equivalent to flatness.

Proof. Since the bundle admits a flat Hermitian metric, it arises from some

representation π1(Σ) → U(r), where E has rank r. This means that P(E) is

the quotient of P
r−1 × Σ̃ by π1(Σ), where Σ̃ is the uniformising cover of Σ.

The product P
r−1 × Σ̃ has a natural constant scalar curvature metric.

Moreover, π1(Σ) acts by isometries with respect to this metric. Hence the

metric descends to a metric on P(E) which also has constant scalar curva-

ture.

Notice that in the statements of Theorems 1.1 and 1.5, the fibres have

constant scalar curvature metrics. The most important difference between

the theorems is that in 1.1 the fibres have no nonzero holomorphic vector

fields, whilst in 1.5 the fibres have holomorphic vector fields, which are

not Killing. If (F,ω) is a compact Kähler manifold with constant scalar

curvature Kähler metric, and ξ is a holomorphic vector field on F which is

not Killing, then flowing ω along ξ gives a non-trivial family of cohomologous

constant scalar curvature Kähler metrics.

From the point of view of the analysis, this situation leads to problems, as

is explained later. It is avoided in Theorem 1.5 by the additional assumption

that the bundle be simple. This means that, whilst there are holomorphic

vector fields on the fibres of P(E), they are not induced by a global vector

field on P(E).
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From the point of view of the algebraic geometry, this lack of automor-

phisms can be seen as part of the stability condition — objects with “too

many automorphisms” are not stable. The hypotheses on E in Theorem

1.5 are equivalent (by the Hitchin-Kobayashi correspondence) to the slope-

stability of E. It may be hoped that this, along with the hypothesis that the

base is “stable” (i.e. has a constant scalar curvature metric) is sufficient to

ensure the “stability” of P(E) in whatever sense is needed by the conjecture

described in Section 1.1.4.

Another important difference between Theorems 1.5 and 1.1 is that the

fibres of the manifolds in Theorem 1.5 are rigid, whilst the fibres in Theorem

1.1 have moduli. This will be seen to lead to extra considerations in the

proof.

1.2.4 Base genus 0 or 1

Return now to case of a complex surface X satisfying the hypotheses of

Theorem 1.1. In the case where Σ has genus 0 or 1, a direct proof of the

theorem can be given. The argument is an adaptation of that used above

for manifolds ruled over curves.

Theorem 1.7. Let X be a compact connected complex surface admitting a

holomorphic submersion π : X → Σ to a surface of genus 0 or 1, for which all

the fibres are of genus at least 2. Then X admits constant scalar curvature

metrics.

Proof. Let g denote the fibre genus. Mapping each fibre of π to its Jaco-

bian determines a map j : Σ → Ag where Ag denotes the moduli space of

principally polarised abelian varieties of dimension g. The universal cover

of Ag is the Siegel upper half space Sg which can be realised as a bounded

domain in CN .

If g(Σ) = 0, j lifts to a holomorphic map P
1 → Sg which must be

constant. If g(Σ) = 1, j lifts to a holomorphic map C → Sg which must also

be constant. In both cases this means that the original map j is constant.

By Torelli’s theorem, all the fibres of π are biholomorphic.

As the model fibre S of X → Σ has genus at least 2, its group of biholo-

morphisms Γ is finite. Define a principal Γ bundle P → Σ by setting the

fibre over σ to be the group of biholomorphisms from π−1(σ) to S. Since P

is a cover of Σ, it arises from some representation π1(Σ) → Γ. Using this
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representation,

X = P ×π1(Σ) S.

In the case g(Σ) = 0, this gives X = S × P
1, which clearly admits

constant scalar curvature metrics. If g(Σ) = 1, X is a quotient of S × C by

π1(Σ). The product S×C admits a natural constant scalar curvature metric,

and with respect to this metric π1(Σ) acts by isometries. Hence the metric

descends to a metric on X which also has constant scalar curvature.

1.3 Adiabatic limits

The main analytic technique which will be used to prove Theorem 1.1 is

that of an adiabatic limit. The word adiabatic comes from the ancient Greek

α’ διάβατoς, which describes a boundary which cannot be crossed. Its use

in science originated in the study of thermodynamics, where an adiabatic

process is one involving no heat transfer. The adiabatic limit was first

employed in physics, where it is used to study slowly changing processes

by approximating them with ones in which the time variable is “infinitely

stretched out.”

The more geometric version of the adiabatic limit considered here has

been used by mathematicians over the last twenty or so years to study a

variety of problems. Schematically, the idea is as follows. The aim is to

solve a partial differential equation Φg(A) = 0 for some geometric object A

defined on a Riemannian manifold (M,g), where M is the total space of a

fibre bundle and where the equation involves the metric. For example, M

is a four (real) dimensional manifold, A is a connection on some bundle and

Φg(A) = 0 is the condition that A is anti-self dual with respect to g. Or,

similar to the problem studied in this thesis, g is a fixed choice of metric,

A a symmetric tensor, and Φg(A) = 0 is the condition that g + A gives a

metric of constant scalar curvature.

A family of metrics gr can be defined by stretching the metric by a factor

of r in the horizontal directions. The family of metrics leads to a family of

equations Φr(A) = 0. Formally, setting r equal to infinity gives another

equation Φ∞(A) = 0 called the adiabatic limit of Φr(A) = 0. A solution of

the limiting equation can be thought of as approximately solving the original

equation for large r. Given such a solution, an implicit function theorem

argument is used to show that there is a genuine solution to Φr(A) = 0

nearby for sufficiently large r.
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The idea is, perhaps, best explained with an example. An adiabatic limit

is used in the proof of Dostoglou and Salamon’s variant of the Atiyah-Floer

conjecture [DS94]. The following section discusses the relevant ideas from

that paper.

1.3.1 Instantons and holomorphic discs

The exposition of [DS94] given here is necessarily brief. Various objects

in the paper (the moduli space of irreducible flat connections over a Riemann

surface, instanton and symplectomorphism Floer homology groups) are not

defined here as they are not relevant to the main discussion. They are all

defined in [DS94] which also contains further references on these topics.

The variation of the Atiyah-Floer conjecture proved by Dostoglou and

Salamon begins with a closed Riemann surface S. Given an orientation

preserving diffeomorphism f : S → S the mapping cylinder

Yf =
S × [0, 1]

(s, 0) = (f(s), 1)

can be constructed. The diffeomorphism f lifts to a bundle automorphism

(unique up to gauge transformations) of the non-trivial SO(3)-bundle P →

S. Using this automorphism an SO(3)-bundle Q → Yf can be defined and

the instanton Floer homology groups of the pair (Yf , Q) can be constructed.

On the other hand, the bundle automorphism of P lifting f induces a

symplectomorphism φ of M the moduli space of flat connections in P . Thus

the symplectic Floer homology groups of the pair (M , φ) can be constructed.

The result proved by Dostoglou and Salamon is that

HF ins
∗ (Yf , Q) ∼= HF symp

∗ (M , φ).

They do this by showing that, in fact (for a suitable choice of auxiliary data),

the two chain complexes involved are isomorphic. The chain groups them-

selves are easily identified: fixed points of φ correspond to flat connections

over Yf . It is in identifying the two differentials that the adiabatic limit is

used.

To define the differential in the instanton picture, a metric is chosen on

Yf . The component of the differential linking flat connections A+ and A−

is then computed by counting instantons in Q×R → Yf ×R which converge

to A± as the R coordinate tends to ±∞.
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Thinking of Yf×R as an S-bundle over S1×R, the metric gives a splitting

Ω2(Yf × R) = Ω2
V ⊕

(
Ω1
V ⊗ Ω1

H

)
⊕ Ω2

H

corresponding to the splitting of the tangent bundle into vertical and hori-

zontal parts (the S1 × R directions are horizontal, the fibre directions ver-

tical). Given a connection A, write F = FV V + FV H + FHH for the decom-

position of its curvature under this splitting.

Scaling the metric by r in the horizontal directions doesn’t affect the

splitting, but does affect the Hodge star. With respect to the scaled metric,

the instanton equations for A become

FV V = −r−1 ∗ FHH , (1.1)

FV H = − ∗ FV H , (1.2)

where ∗ is the Hodge star of the unscaled metric.

In the adiabatic limit r → ∞, equation (1.1) says that A induces flat

connections in the fibres. Thus a solution to the adiabatic limit equations

is, in part, a family of flat connections in P , defined up to gauge, i.e. a map

A : I × R → M with A(0, t) = φ (A(1, t)).

Equation (1.2) can be interpreted as the Cauchy-Riemann equations for

the map A. To see this, first recall that in the presence of a metric on S,

there is an identification

T[B]M
∼= H

1
B (S, gP ),

whereB is a flat connection in P and the right hand side denotes B-harmonic

1-forms with values in gP . Under this identification the complex structure

on M is given by minus the Hodge star.

To calculate the derivative of the map A at a point (s, t) fix an identifica-

tion of the fibre of Yf ×R over (s, t) with S, and of Q restricted to this fibre

with P . Denote by B the fibrewise connection under these identifications.

Then

T(s,t) (I × R)
FV H−→ Ω1(S, gP ) −→ H

1
B (S, gP )

gives the derivative of A at (s, t), where the second map is projection onto

the harmonic part. Conceptually, this is because FV H quantifies the non-

commutativity of parallel transport in the fibre directions with parallel trans-

port in the horizontal directions, i.e. if we use horizontal parallel transport
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to identify Q × R restricted to nearby fibres of Yf × R, FV H measures the

infinitesimal change in fibre-wise connection. Since the horizontal parallel

transport also changes the fibre-wise identifications, it is necessary to project

onto the harmonic part of FV H to obtain the infinitesimal change in the con-

nection over (s, t) with respect to the original identification. Alternatively,

this can be proved by local calculation.

Still using these identifications, write FV H = α ⊗ ds + β ⊗ dt where

α, β ∈ Ω1(S, gP ). Equation (1.2) now reads ∗Sα = −β, where ∗S is the

Hodge star on S. As DA(∂s) = α, DA(∂t) = β and J∂s = ∂t, and the Hodge

star commutes with harmonic projection, this is precisely the condition that

A is holomorphic.

The conclusion is that solutions of the adiabatic limit of the instanton

equations correspond to the holomorphic strips I×R → M used to define the

differential in the symplectic Floer complex. What Dostoglou and Salamon

prove is that this is not just a formal correspondence. It is, for large enough

values of r, a bijection.

Each holomorphic strip determines a connection over Yf × R. The con-

nection is obtained by pulling back the universal connection in the universal

bundle over M . The construction of these universal objects is explained in

sections 5.1.1 and 5.2.3 of [DK90]. In the limit r → ∞ the self-dual part of

the curvature of this connection (with respect to the r-scaled metric) tends

to zero. The implicit function theorem then shows that, for each large r,

there is a unique instanton (with respect to the r-scaled metric) nearby.

Conversely, for large enough r, every instanton is obtained this way. This

shows that the differentials used to compute the different Floer homology

groups are equal, proving the result.

1.4 Outline of proof

This section gives an outline of the proof of Theorem 1.1.

The first step is to construct a family of approximate solutions. This

is done in Chapter 4. The motivating idea is that in an adiabatic limit

the local geometry is dominated by that of the fibre. The approximate

solutions are essentially constructed, then, by fitting together the constant

scalar curvature metrics on the fibres of X and stretching out the base.

If the base is scaled by a factor r, these metrics these metrics have scalar

curvature which is O(r−1) from being constant. Chapter 4 also discusses
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adjusting these metrics to decrease the error to O(r−n) for any positive

integer n.

The remaining chapters carry out the hard work of showing that a gen-

uine solution lies nearby. Doing this involves solving a parameter dependent

implicit function theorem. As is explained in Section 5.1, such arguments

hinge on certain analytic estimates. In particular the right inverse of the

derivative involved must be controlled uniformly with respect to the param-

eter.

Section 5.2 discusses the example of the product S × T 2 where the flat

torus T 2 is scaled by a factor r. By considering the required estimates in this

specific case, the general behaviour of the relevant linear operator can be

guessed at. Moreover, as is discussed in Chapter 6, this example provides a

local model for the metric in the general case. This provides justification for

the statement that, as r → ∞, the geometry of the fibre dominates. It also

enables the relevant local analytic estimates (Sobolev inequalities, elliptic

estimates etc.) to be proved.

Controlling the inverse of the derivative is a global analytic problem, and

so the local model is not of direct use. Instead, in Chapter 7, a global model

is used which is easier to compute with. Finally, Chapter 8 tidies up the

remaining loose ends needed to use a parameter dependent implicit function

theorem and complete the proof of Theorem 1.1.

Before the start of the proof itself, Chapters 2 and 3 collate some back-

ground information which will feature later on. Chapter 2 briefly describes

the correspondence between constant curvature metrics and complex struc-

tures which holds for Riemann surfaces. In particular it proves that on

a high genus compact surface, the hyperbolic metric corresponding to a

particular complex structure varies smoothly with the complex structure.

Chapter 3 proves some straightforward properties of the scalar curvature

and its dependence on the Kähler structure. In particular it states precisely

how various geometric objects are uniformly continuous with respect to the

metric used to define them. The results of both these chapters are standard

and widely known, although not stated in the literature in quite the form

used here.
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This chapter discusses the classical correspondence on high genus compact

Riemann surfaces, between complex structures and constant scalar curvature

metrics. The existence and uniqueness of such metrics is deduced from an

existence and uniqueness theorem for a certain partial differential equation.

This theorem is used again in a different, but related, context in Chapter 4.

The results in this chapter are well known. [Tro92] is a general reference

for such things, whilst [KW71] takes the point of view explained here. In

particular, the equation (2.4) is discussed there.

2.1 Complex structures and conformal classes

This section describes briefly the correspondence, on oriented smooth sur-

faces, between conformal classes and complex structures. Recall that a dif-

feomorphism f : C → C is holomorphic if and only if it is conformal. This

means that any holomorphic coordinate chart on a Riemann surface S gives

S a natural conformal structure.

The converse result is more difficult. Given a conformal class on S,

choose a representative metric g. It follows essentially from the Riemann

mapping theorem that there are local coordinates (x, y) on S in which g has

the form

g = F (x, y)
(
dx2 + dy2

)
.

Such coordinates are called isothermal. For a short proof of the existence of

isothermal coordinates see [Che55]. Oriented changes of coordinates between

isothermal patches are conformal, hence holomorphic. This gives a one-to-

one correspondence between complex structures and conformal classes.

2.2 Conformal classes and constant curvature metrics

This section proves that, on an oriented surface with genus at least 2 and of

fixed area, any conformal class contains a unique constant scalar curvature

metric. It also proves that the corresponding metric depends smoothly on

the conformal class. Combined with the correspondence described in the

previous section this gives a one-to-one correspondence between complex

structures and constant scalar curvature metrics of prescribed area.

2.2.1 Existence and uniqueness

Let S be an oriented surface and [g] a conformal class on S. Any repre-

sentative for the class can be written as g′ = eφg for some function φ. The
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conformal class [g] determines a complex structure on S. Using this, the

Ricci forms ρ and ρ′ of the metrics g and g′ are related by

ρ′ = ρ+ i∂̄∂φ. (2.1)

Denoting the trace operators corresponding to g and g′ by Λ and Λ′

respectively we have

Λ′ = e−φΛ. (2.2)

Equations (2.1) and (2.2) show that the scalar curvatures Scal and Scal′ of

the two metrics are related by

Scal′ eφ = Scal +∆φ, (2.3)

where ∆ is the g-Laplacian.

By rescaling, if a given conformal class admits a constant scalar curvature

metric, it admits one with scalar curvature minus one. To show the existence

of a unique solution φ to equation (2.3) with Scal′ = −1 it is sufficient to

show that there is a unique solution φ ∈ C∞ to the partial differential

equation

∆φ+ eφ = ψ, (2.4)

for any ψ ∈ C∞ such that
∫
S ψ > 0. (This holds for ψ = − Scal by Gauss-

Bonnet.)

First, a lemma is proved that will establish uniqueness and a priori

bounds on solutions of (2.4).

Lemma 2.1. Suppose φ± ∈ C2 are functions satisfying

∆φ+ + eφ+ > ψ,

∆φ− + eφ− < ψ,

and φ ∈ C2 is a solution of

∆φ+ eφ = ψ.

Then φ− < φ < φ+. The lemma remains true with strict inequalities re-

placed throughout by weak ones.

Proof. Put χ = φ+ − φ. Notice that ∆χ+ eφ(eχ− 1) > 0. As S is compact,

χ attains its minimum. At such points ∆χ ≤ 0. Thus eχ > 1 at the minima

of χ and hence everywhere. Therefore φ < φ+. The proofs of φ− < φ and

the weak inequalities version are similar.
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Next, a lemma is proved on regularity of solutions of (2.4).

Lemma 2.2. Let ψ ∈ L2
k for k ≥ 2 and suppose that φ ∈ L2

2 solves

∆φ+ eφ = ψ.

Then φ ∈ L2
k+2. In particular if ψ ∈ C∞ then φ ∈ C∞.

Proof. For l ≥ 2, exponentiation defines a map L2
l → L2

l . To see this note

that on a Riemann surface L2
l →֒ C0 for l ≥ 2. This implies products of

functions in L2
l are also in L2

l , and hence analytic operations (in particular

φ 7→ eφ) map L2
l → L2

l .

This means that ∆φ = ψ− eφ is in L2
2. Elliptic regularity for the Lapla-

cian implies φ ∈ L2
4. Iterating the argument gives the result.

Theorem 2.3. Let S be a compact oriented surface of genus at least 2 with

a Riemannian metric. If ψ ∈ L2
2 has strictly positive integral then there

exists a unique solution φ ∈ L2
4 to the equation

∆φ+ eφ = ψ.

Proof. Lemma 2.1 gives uniqueness: if φ and φ′ are solutions of (2.4) put

φ− = φ′ = φ+ in the weak inequalities version to conclude that φ = φ′. (The

Sobolev embedding L2
4 →֒ C2 ensures φ, φ′ ∈ C2.)

A continuity method is used to prove existence. Let A denote the set

of functions ψ ∈ L2
2 with strictly positive integral, and A′ ⊂ S denote the

subset of functions for which (2.4) has a solution φ ∈ L2
4. A is a convex

set and so is connected. When ψ = 1, φ = 0 solves (2.4) so A′ is non-

empty. It suffices, then, to show that S′ is both open and closed in A (in

the L2
2-topology).

A′ is open

Define a map F : L2
4 → L2

2 by

F (φ) = ∆φ+ eφ.

F is differentiable, its derivative at φ being given by

DFφ(χ) = ∆χ+ eφχ.

This is an elliptic, self adjoint, strictly positive operator. By the Fredholm

alternative it is an isomorphism.
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By the inverse function theorem, each point ψ ∈ A′ has a neighbourhood

on which F is invertible. That is, A′ is open.

A′ is closed

Take a sequence (ψn) in A′ converging in L2
2 to a function ψ ∈ S. Denote

by φn ∈ L2
4 the functions satisfying

∆φn + eφn = ψn.

To show ψ ∈ A′ a solution of (2.4) must be found.

Choose functions φ± as in Lemma 2.1 (with strict inequalities). For

φ+ take any constant bigger than ‖ logψ‖C0 . To find φ− let ψ̄ =
∫
S ψ

denote the average value of ψ. As ψ − ψ̄ is L2-orthogonal to the constants

there exists φ− such that ∆φ− = ψ − ψ̄. By regularity for the Laplacian,

φ− ∈ L2
4. Hence, by Sobolev embedding, φ− ∈ C2. This choice of φ− works

unless eφ− ≥ ψ̄ at some point of S. Since ψ̄ > 0 this can be prevented by

subtracting a large constant from φ−.

By Sobolev embedding, ψn → ψ in C0. So for sufficiently large n,

∆φ+ + eφ+ > ψn,

∆φ− + eφ− < ψn.

Hence φ− < φn < φ+. This gives an a priori estimate for φn, i.e. ‖φn‖C0 is

bounded.

This estimate can be improved to an L2
4 bound. The C0 bound on φn

implies that eφn is bounded in C0, and hence also in L2. As ψn converges

in L2
2 it is bounded in L2

2, and so in L2. Since

∆φn = ψn − eφn ,

it follows that ∆φn is bounded in L2. As φn has already be shown to be

bounded in L2 (via C0), φn is bounded in L2
2.

The map φ 7→ eφ is continuous as a map on L2
2. This implies that eφn is

bounded in L2
2. Hence ∆φn is bounded in L2

2, and so φn is bounded in L2
4

as required.

The embedding L2
4 →֒ C2 is compact, so φn has an C2-convergent sub-

sequence. Its limit φ is a C2 solution of (2.4). By Lemma 2.2, φ ∈ L2
4. This

proves A′ is closed.
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This theorem, together with Lemma 2.2, proves the following.

Theorem 2.4. On a compact, oriented surface of genus at least two, each

conformal class contains a unique metric with scalar curvature identically

minus one.

2.2.2 Smooth dependence

A family of metrics {gt : t ∈ R} on S is said to be smooth if it corresponds

to a smooth tensor over S × R.

Proposition 2.5. Let {gt : t ∈ R} be a smooth family of metrics on a

compact orientable surface of genus g ≥ 2. Let φt denote the corresponding

functions such that eφtgt has constant scalar curvature −1. Then φ depends

smoothly on t.

Proof. Let Scalt be the scalar curvature of gt. Then φt is the unique solution

of the equation

∆φt + eφt = − Scalt .

The formula for scalar curvature shows that, since gt depends smoothly

on t, so does St. Since the surface is compact, the C0-topology is stronger

than the L2-topology. Hence t 7→ Scalt defines a smooth map of Banach

spaces R → L2.

The inverse function theorem (as used to prove A′ is open during the

proof of Theorem 2.3) gives that t 7→ φt is a smooth map of Banach spaces

R → L2
2. By Sobolev embedding, the L2

2 topology is stronger than the C0

topology. Hence φt depends smoothly on t.

As an expansion of this argument, the existence of the first derivative is

proved in detail. Since the surface is compact,

|h|−1

∥∥∥∥Scalt+h− Scalt−h
∂ Scal

∂t

∥∥∥∥
L2

is bounded above by

const.|h|−1

∥∥∥∥Scalt+h− Scalt−h
∂ Scal

∂t

∥∥∥∥
C0

.

The second expresion, and hence the first, tends to zero as h → 0. So

t 7→ Scalt is a differentiable map of Banach spaces R → L2.
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By the inverse function theorem, t 7→ φt is a differentiable map of Banach

spaces. Its derivative at t is a bounded linear mapDφt : R → L2
2. By Sobolev

embedding,

|h|−1 ‖φt+h − φt − hDφt(1)‖C0 ≤ const.|h|−1 ‖φt+h − φt −Dφt(h)‖L2
2
.

The right hand side tends to zero as h → 0, so φt is differentiable with

respect to t (with ∂φ/∂t = Dφt(1)).
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This chapter details some general properties of the scalar curvature of Kähler

manifolds. Parts of the proof of Theorem 1.1 involve comparing the actual

metric at hand to a local model. Correspondingly, part of this chapter con-

centrates on comparing the scalar curvatures of different Kähler structures

on the same underlying manifold.

3.1 The scalar curvature map

Kähler metrics on a compact Kähler manifold X in a fixed cohomology class

are parametrised by Kähler potentials: any other Kähler form cohomologous

to a given Kähler metric ω is of the form

ωφ = ω + i∂̄∂φ (3.1)

for some real valued φ ∈ C∞. (This follows from the ∂̄∂-Lemma.) Equation

(3.1) determines φ up to an additive constant. Moreover, equation (3.1)

defines a Kähler metric providing the second derivatives of φ satisfy an

open condition corresponding to the condition that ωφ be positive. In this

way the Kähler metrics in the class [ω] are parametrised by an open set

U ⊂ C∞ modulo the action of R acting by addition.

The scalar curvature of a Kähler metric can be expressed as the trace of

the Ricci form with respect to the Kähler form:

Scal(ω)ωn = nρ ∧ ωn−1,

where n is the complex dimension of X. Scalar curvature defines a map

S : U → C∞, S(φ) = Scal(ωφ).

The equation studied in this thesis is

Scal(ωφ) = const.

This is a fourth order fully nonlinear nonlinear partial differential equation

for φ. (Fully nonlinear means that the nonlinearities involve the highest

order derivatives of φ.)

Lemma 3.1. Let V denote the Lpk+4-completion of U . S extends to a map

S : V → Lpk whenever (k + 2)p− 2n > 0.

Proof. The condition on k and p ensures that the Sobolev embedding the-

orem applies (see,e.g. [Aub82]); so that Lpk+2 →֒ C0. In particular, for

φ ∈ Lpk+4, the metric ωφ ∈ Lpk+2 is continuous. Locally, the Ricci form is
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given by ρ = i∂̄∂ log det g, where g is the metric on the tangent bundle. Since

log det g depends analytically on g and since g is continuous, log det g ∈ Lpk+2

also. It follows that ρ ∈ Lpk. Finally, since taking the trace with respect to

a continuous metric defines a map Lpk → Lpk, S(φ) ∈ Lpk.

Lemma 3.2. The map S : V → Lpk is smooth. Its derivative at the origin

is given by

L(φ) =
(
∆2 − S(0)∆

)
φ+ n(n− 1)

i∂̄∂φ ∧ ρ ∧ ωn−2

ωn
. (3.2)

Proof. The proof that S extends to a map between Sobolev spaces shows,

in fact, that S(φ) depends analytically on φ and its derivatives up to fourth

order. In particular S is smooth.

To compute its derivative, let ωt = ω+ ti∂̄∂φ. The corresponding metric

on the tangent bundle is gt = g + tΦ where Φ is the real symmetric tensor

corresponding to i∂̄∂φ. The Ricci form is given locally by

ρt = ρ+ i∂̄∂ log det
(
1 + tg−1Φ

)
.

Now tr(g−1Φ) = Λ(i∂̄∂φ) = ∆φ. Hence, at t = 0,

dω

dt
= i∂̄∂φ,

dρ

dt
= i∂̄∂(∆φ).

The result follows from differentiating the equation Sωn = nρ ∧ ωn−1.

Remarks 3.3.

1. In flat space L = ∆2.

2. In general, the leading order term of L is ∆2. It follows immediately

that L is elliptic, with index zero.

3. It follows, either from the formula for L, or from the fact that
∫
S(φ)ωnφ

is constant, that
∫
L(φ)ωn = −

∫
φ∆S(0)ωn.

In particular, for metrics of constant scalar curvature, imL is L2-

orthogonal to the constant functions.

4. By symmetry, the derivative of S at a point ψ ∈ Lpk+4 is given by a

similar expression where all the quantities are calculated with respect

to the metric ωψ.
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Example 3.4 (High genus curves). For the hyperbolic metric on a high

genus curve, S(0) = −1. Hence the above lemma gives

L = ∆2 + ∆.

As mentioned above, L has index 0. If φ ∈ kerL then, by standard

elliptic regularity arguments (see, e.g. [Aub82]), φ is smooth. Moreover,

0 = 〈φ,Lφ〉 = ‖∆φ‖2
L2 + ‖dφ‖2

L2 .

Hence φ is constant. Considered as a map between spaces of functions with

mean value zero, L is an isomorphism.

Since Theorem 1.1 is concerned with a family of high genus curves, this

result will be useful in several places in this thesis.

Example 3.5 (Kähler products). Let (F,ωF ) and (B,ωB) be Kähler

manifolds with LF and LB denoting the corresponding linearisations of

scalar curvature, and Laplacians ∆F and ∆B. Let X = F × B and con-

sider the Kähler metric

ωr = ωF ⊕ rωB.

Direct calculation using formula (3.2) shows that the linearisation of the

scalar curvature map defined by ωr is

LF + 2r−1∆F∆B + r−2LB .

This formula will be useful in section 5.2.

In the above discussion of scalar curvature, the underlying complex man-

ifold (X,J) is regarded as fixed, whilst the Kähler form ω is varying. An

alternative point of view is described in [Don97]. There the symplectic

manifold (X,ω) is fixed, whilst the complex structure is varying (through

complex structures compatible with ω). The two points of view are related

as follows.

Calculation shows that, on a Kähler manifold (X,J, ω),

2i∂̄∂φ = L∇φω.

Hence the change in ω due to the Kähler potential φ is precisely that caused

by flowing ω along ∇φ. Flowing the Kähler structure back along −∇φ

restores the original symplectic form, but changes the complex structure by
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−L∇φJ . This means that the two points of view (varying ω versus varying

J) are related by the diffeomorphism generated by ∇φ.

The following result, on the first order variation of scalar curvature under

changes in complex structure, is proved in [Don97]. The operator

D : C∞(X) → Ω0,1(TX)

is defined by Dφ = ∂̄∇φ, where ∂̄ is the ∂̄-operator of the holomorphic

tangent bundle. The operator D∗ is the formal adjoint of D with respect to

the L2-inner product determined by the Kähler metric.

Lemma 3.6. An infinitesimal change of −L∇φ in the complex structure J

causes an infinitesimal change of D∗Dφ in the scalar curvature of (X,J, ω).

Taking into account the diffeomorphism required to relate this point of

view to that in which ω varies gives the following formula for the linearisation

of scalar curvature with respect to Kähler potentials:

Lemma 3.7.

L(φ) = D
∗
Dφ+ ∇ Scal ·∇φ (3.3)

If the scalar curvature is constant, then L = D∗D . In particular kerL =

ker D consists of functions with holomorphic gradient. If X has constant

scalar curvature and no holomorphic vector fields, then kerL = R. Since L

is also self adjoint, L is an isomorphism between spaces of functions with

mean value zero. This generalises Example 3.4 (which considered a high

genus curve with its hyperbolic metric).

3.2 Dependence on the Kähler structure

This section proves that the scalar curvature map is uniformly continuous

under changes of the Kähler structure. The arguments are straightforward,

this section simply serves to give a precise statement of estimates that will

be used later.

3.2.1 Ck-topology

The results are proved first using the Ck-topology. The Leibniz law

implies that there is a constant C such that for tensors T , T ′ ∈ Ck

‖T · T ′‖Ck ≤ C‖T‖Ck‖T ′‖Ck . (3.4)
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The dot stands for any algebraic operation involving tensor product and

contraction. The constant C depends only on k, not on the metric used to

calculated the norms (in contrast to the Sobolev analogue, which is discussed

in the next section).

Lemma 3.8. There exist positive constants c, K, such that whenever g, g′

are two different metrics on the same compact manifold, satisfying

‖g′ − g‖Ck+2 ≤ c,

with corresponding curvature tensors R, R′, then

‖R′ −R‖Ck ≤ K‖g′ − g‖Ck+2 .

All norms are taken with respect to the metric g′. K depends only on c and

k (and not on g or g′).

Proof. Let g = g′ + h. If the corresponding Levi-Civita connections are

denoted ∇ and ∇′, then ∇ = ∇′ + a, where a corresponds to −∇′h under

the isomorphism T ∗ ⊗ EndT ∼= T ∗ ⊗ T ∗ ⊗ T ∗ defined by g. That is,

a · (g′ + h) = −∇′h,

where the dot denotes some algebraic operation. Hence

‖a‖Ck+1 = ‖a · g′‖Ck+1 ,

≤ ‖∇′h‖Ck+1 + C‖a‖Ck+1‖h‖Ck+1 ,

(using inequality (3.4) above). Taking c < C−1 gives

‖a‖Ck+1 ≤ ‖h‖Ck+2

(
1 − c−1‖h‖Ck+2

)−1
.

The difference in curvatures is given by

R−R′ = ∇′a+
1

2
a ∧ a.

The result now follows from (3.4).

Remark. For uniformity, it is essential that the norms are measured with

respect to one of the metrics involved. If the norms were taken with respect

to a third metric g′′, the bound would also depend on ‖g′ − g′′‖Ck(g′′).
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Lemma 3.9. Given k and M > 0, there exist positive constants c and K

such that whenever g and g′ are two different metrics on the same compact

manifold, satisfying

‖g′ − g‖Ck+2 ≤ c,

‖R′‖Ck ≤ M,

where R′ is the curvature tensor of g′, then

‖Ric′−Ric ‖Ck ≤ K‖g′ − g‖Ck+2 .

Here Ric and Ric′ are the Ricci tensors of g and g′ respectively and all norms

are taken with respect to the metric g′.

Proof. The Ricci tensor is given by Ric = R · g where the dot denotes

contraction with the metric. Simple algebra gives

Ric′ −Ric = (R′ −R) · g′ − (R′ −R) · (g′ − g) +R′ · (g′ − g).

It follows from inequality (3.4) that ‖Ric′−Ric ‖Ck is controlled by a con-

stant multiple

‖R′ −R‖Ck‖g′‖Ck + ‖R′ −R‖Ck‖g′ − g‖Ck + ‖R′‖Ck‖g′ − g‖Ck .

Since the Ck-norm of g′ is constant, the result follows from Lemma 3.8.

Lemma 3.10. Given k and M > 0, there exist positive constants c and K

such that whenever g and g′ are two different metrics on the same compact

manifold, satisfying

‖g′ − g‖Ck+2 ≤ c,

‖R′‖Ck ≤ M,

where R′ is the curvature tensor of g′, then

‖Scal′− Scal ‖Ck ≤ K‖g′ − g‖Ck+2 .

Here Scal and Scal′ are the scalar curvatures of g and g′ respectively and all

norms are taken with respect to the metric g′.

Proof. As Scal = Ric ·g, the argument is similar to the proof of Lemma

3.9.
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Returning to the Kähler case, these lemmas show that the derivative of

the scalar curvature map (described in the previous section) is uniformly

continuous with respect to the Kähler structure used to define it.

Lemma 3.11. Given k and M > 0, there exist positive constants c and K

such that whenever (J, ω), (J ′, ω′) are two different Kähler structures on the

same compact manifold satisfying

‖(J ′, ω′) − (J, ω)‖Ck+2 ≤ c,

‖R′‖Ck ≤ M,

where R′ is the curvature tensor of (J ′, ω′), then the linearisations L and L′

of the corresponding scalar curvature maps satisfy

∥∥(L′ − L)(φ)
∥∥
Lp

k

≤ K‖(J ′, ω′) − (J, ω)‖Ck+2‖φ‖Lp

k+4
.

All norms are computed with respect to the primed Kähler structure.

Proof. The formula (3.2) shows that L is a sum of compositions of the opera-

tors ∆, i∂̄∂, multiplication by Scal, ρ and ω, and division of top degree forms

by ωn. It suffices, then, to show that these operations satisfy inequalities

analogous to that in the statement of the lemma.

For multiplication by ω this is immediate. Since dividing top degree

forms by ωn is the same as taking the inner product with ωn/n! it holds for

this operation too.

For multiplication by Scal and ρ, the inequalities follow from Lemmas

3.9 and 3.10 and the inequality

‖uv‖Lp

k
≤ C‖u‖Ck‖v‖Lp

k

for some C (depending only on k).

On functions, ∆ is the trace of i∂̄∂, so to prove the lemma it suffices

to prove that i∂̄∂ satisfies the relevant inequality (c.f. the proof of Lemma

3.9). Since

π1,0 =
1

2
(1 − iJ),

the operator ∂ = π1,0d satisfies the required inequality. Similarly for ∂̄.

Hence i∂̄∂ and ∆ do too.

Putting this all together proves the result.
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Of course, it is also be possible to prove this result using equation (3.3)

in place of (3.2).

3.2.2 Lpk-topology

In the above discussion of continuity, it is possible to work with Sobolev

rather than Ck norms. The same arguments apply with one minor modifi-

cation. Inequality (3.4) is replaced by

‖T · T ′‖Lp

k
≤ C‖T‖Lp

k
‖T ′‖Lp

k
,

which holds provided Lpk →֒ C0. Moreover, the constant C depends on the

metric through the constants appearing in the Sobolev inequalities

‖S‖C0 ≤ C ′‖S‖Lp

k
for kp > 2n, (3.5)

‖S‖Lp

k
≤ C ′′‖S‖Lq for kp > 2n. (3.6)

With this in mind, the same chain of reasoning which leads to Lemma 3.11

also proves:

Lemma 3.12. Let k, p and n satisfy kp−2n > 0, and M be a positive con-

stant. There exist positive constants c and K such that if (J, ω) (J ′, ω′) are

two different Kähler structures on the same complex n-dimensional manifold

satisfying

‖(J ′, ω′) − (J, ω)‖Lp

k+2
≤ c,

‖R′‖Lp

k
, C ′, C ′′ ≤ M,

where R′ is the full curvature tensor and C ′, C ′′ are the Sobolev constants

from inequalities (3.5) and (3.6) for the primed Kähler structure, then the

linearisations L and L′ of the corresponding scalar curvature maps satisfy

∥∥(L′ − L)(φ)
∥∥
Lp

k

≤ K‖(J ′, ω′) − (J, ω)‖Lp

k+2
‖φ‖Lp

k+4
.

All norms are computed with respect to the primed Kähler structure.
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4Approximate

solutions



Throughout the remainder of this thesis, X is a compact connected complex

surface and π : X → Σ is a holomorphic submersion onto a smooth curve

with fibres of genus at least 2.

This chapter constructs families of metrics on X each depending on a

parameter r. As r → ∞, the scalar curvature of these metrics approaches

minus one. As will be seen, increasing r can be thought of as “stretching

out the base.”

During this chapter, various power series expansions in negative powers

of r will be used. At this stage, the calculations are meant purely formally.

Questions of convergence with respect to various Banach space norms will

be addressed later. The expression O(r−n) is also to be interpreted formally,

i.e. it represents an arbitrary term with a factor of r−n−k for some k ≥ 0.

Alternatively, when used to describe functions, it can be interpreted in terms

of pointwise convergence.

The ultimate aim of this chapter is to construct, for each non-negative

integer n, a family of metrics ωr,n parametrised by r, satisfying

Scal(ωr,n) = −1 +
n∑

i=1

cir
−i +O

(
r−n−1

)
,

where c1, . . . , cn are constants. (The actual value of the constants will also

be established; see the end of this chapter.) This is accomplished in Theorem

4.14. As will be seen, constructing ωr,0 and ωr,1 involves slightly different

issues to the higher order approximate solutions, all of which can be con-

structed recursively.

4.1 The first order approximate solution

Recall the cohomology classes

κr = −2π (c1(V ) + rc1(Σ))

mentioned in the introduction. Here V denotes the vertical tangent bundle

over X and r is a positive real number.

Lemma 4.1. For all sufficiently large r, κr is a Kähler class. Moreover, it

contains a Kähler representative ωr whose fibrewise restriction is the canon-

ical hyperbolic metric on that fibre.

Proof. Each fibre has a canonical hyperbolic metric. These metrics vary

smoothly from fibre to fibre and so define a Hermitian structure in the
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holomorphic bundle V → X. (See Chapter 2 for proofs of these statements.)

Denote the corresponding curvature form by FV , and define a closed real

(1, 1)-form by

ω0 = −iFV .

Notice that [ω0] = −2πc1(V ).

The fibrewise restriction of FV is just the curvature of the fibre with

respect to its hyperbolic metric. This implies that the restriction of ω0 to a

fibre is the hyperbolic metric itself.

Since the fibrewise restriction of ω0 is nondegenerate, it defines a splitting

TX = V ⊕H, where

Hx = {u ∈ TxX : ω0(u, v) = 0 for all v ∈ Vx}.

Let ωΣ be any Kähler form on the base, scaled so that [ωΣ] = −c1(Σ).

The form ωΣ (pulled back to X) is a pointwise basis for the purely hori-

zontal (1, 1)-forms. This means that, with respect to the vertical-horizontal

decomposition,

ω0 = ωσ ⊕ θωΣ

for some function θ : X → R, where ωσ is the hyperbolic Kähler form on

the fibre Sσ over σ.

For r > − inf θ, the closed real (1, 1)-form

ωr = ω0 + rπ∗ωΣ

is positive, and hence Kähler, with [ωr] = κr. Its restriction to Sσ is ωσ as

required.

The next lemma shows that the metrics ωr constructed above have ap-

proximately constant scalar curvature. First, however, some notation.

Definition 4.2. The vertical Laplacian, denoted ∆V , is defined by

(∆V φ)ωσ = i(∂̄∂φ)V V ,

where (α)V V denotes the purely vertical component of a (1, 1)-form α. The

fibre wise restriction of ∆V is the Laplacian determined by ωσ.

The horizontal Laplacian, denoted ∆H , is defined by

(∆Hφ)ωΣ = (i∂̄∂φ)HH ,
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where (α)HH denotes the purely horizontal component of a (1, 1)-form α.

On functions pulled up from the base, ∆H is the Laplacian determined by

ωΣ.

Lemma 4.3. The scalar curvature of ωr satisfies

Scal(ωr) = −1 + r−1 (Scal(ωΣ) − θ + ∆V θ) +O(r−2). (4.1)

Proof. The short exact sequence of holomorphic bundles

0 → V → TX → H → 0

induces an isomorphism KX
∼= V ∗ ⊗H∗. This means that the Ricci form of

ωr is given by ρr = i(FV + FH) where FV and FH are the curvature forms

of V and H respectively.

The metric on the horizontal tangent bundle is (r+ θ)ωΣ. Its curvature

is given by

iFH = ρΣ + i∂̄∂ log(1 + r−1θ),

where ρΣ is the Ricci form of ωΣ. The curvature of the vertical tangent

bundle has already been considered in the definition ω0 = −iFV . Hence

ρr = −ωσ − θωΣ + ρΣ + i∂̄∂ log(1 + r−1θ). (4.2)

Taking the trace gives

Scal(ωr) = −1 +
Scal(ωΣ) − θ

r + θ
+ ∆r log(1 + r−1θ).

where ∆r is the Laplacian determined by ωr. Using the formula

∆r = ∆V +
∆H

r + θ
(4.3)

and expanding out in powers of r−1 proves the result.

Since Scal(ωr) = −1 +O(r−1), setting ωr,0 = ωr gives the first family of

approximate solutions.

4.2 The second order approximate solution

As will be explained in section 5.2, the scalar curvature of ωr is not suf-

ficiently close to being constant for the implicit function theorem to be of

direct use. This section constructs the necessary higher order approxima-

tions.

41



Let Lr denote the linearisation of the scalar curvature map on Kähler

potentials determined by ωr. The r dependence of Lr will be of central

importance in the proof of Theorem 1.1. Its study will essentially occupy

the remainder of this thesis. A first step in this direction is provided by the

following lemma. Recall that the expression O(r−1) is meant purely formally

here. (See the discussion at the start of this Chapter for an elaboration of

this.)

Lemma 4.4.

Lr = ∆2
V + ∆V +O(r−1).

Proof. Recall the formula (3.2) for Lr:

Lr(φ) = ∆2
rφ− Scal(ωr)∆rφ+

2i∂̄∂φ ∧ ρr
ω2
r

.

Equations (4.1), (4.2) and (4.3) give the r dependence of Scal(ωr), ρr and

∆r respectively. Direct calculation gives the result.

Remark. Notice that the O(1) term of Lr is the first order variation in

the scalar curvature of the fibres (see Example 3.4). This can be seen as an

example of the dominance of the local geometry of the fibre in an adiabatic

limit.

Rather than use a calculation as above, this result can be seen directly

from formula (4.1). The O(1) term in Scal(ωr) is Scal(ωσ). Rather than

considering a Kähler potential as a change in ωr, it can be thought of as a

change in ω0. This gives a corresponding change in ωσ and the O(1) effect

on Scal(ωr) is precisely that claimed.

Given a function φ ∈ C∞(X), taking the fibrewise mean value gives a

function πΣφ ∈ C∞(Σ):

(πΣφ)(σ) =
1

vol(Sσ)

∫

Sσ

φωσ,

where Sσ = π−1(σ) is the fibre over σ. Define π0 = 1 − πΣ. The projection

maps π0 and πΣ determine a splitting

C∞(X) = C∞
0 (X) ⊕C∞(Σ),

where C∞
0 (X) denotes functions with fibrewise mean value zero.
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The previous lemma implies that, at least to O(r−1), functions in the

image of Lr have fibrewise mean value zero. It is because of this that the

C∞
0 (X) and C∞(Σ) components of the errors in Scal(ωr) must be dealt with

differently.

Recall (from Lemma 4.3) that the O(r−1) term in Scal(ωr) is

Scal(ωΣ) − θ + ∆V θ.

Taking the fibrewise mean value shows that the C∞(Σ) component of this

is

Scal(ωΣ) − πΣθ.

As will be shown, there is a choice of ωΣ for which this is constant. (The

definition of ωr has, so far, involved an arbitrary metric on Σ.) The re-

mainder of the O(r−1) error will be corrected by adding a Kähler potential

i∂̄∂r−1φ1 to ωr.

4.2.1 The correct choice of ωΣ

It follows from the definition of θ (as the horizontal part of ω0 = −iFV

divided by ωΣ) that

πΣθ = −A−1ΛΣπ∗(F
2
V ),

where A is the area of a fibre and ΛΣ is the trace on (1, 1)-forms on Σ

determined by ωΣ. The following theorem will be used to find ωΣ.

Theorem 4.5. Let Σ be a compact curve with genus at least 2, and α ∈

Ω2(Σ) a form with nonnegative integral. Each conformal class on Σ contains

a unique representative with

Scal−Λα = −1.

Proof. Pick a metric ω on Σ. Write any other metric in the same conformal

class as ω′ = ehω. As in equation (2.3), the curvatures of ω and ω′ are

related by

Scal′ = e−h (Scal +∆h) ,

where ∆ is the ω-Laplacian. The traces of α with respect to ω and ω′ are

related by

Λ′α = e−hΛα.
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Hence the theorem will be proved if there exists a unique solution h to the

equation

∆h+ eh = Λα− Scal .

This is precisely the partial differential equation solved in Theorem 2.3.

Since
∫
(Λα − Scal)ω > 0, the result follows.

In order to apply this result, first notice that the cases of Theorem 1.1

with base genus 0 or 1 were dealt with in Chapter 1. Attention in these

later chapters is restricted solely to bases with high genus (i.e. at least 2).

It remains to prove that the form α = −π∗(F
2
V ) has positive integral

over Σ. Recall the discussion of the signature of X in Section 1.2.2 and

in particular the proof of Theorem 1.4. This showed that [α] was the pull

back of an ample class from the moduli space of curves (Mumford’s first

tautological class to be precise). It is because of this that
∫
α ≥ 0.

In fact, although this will not be used here, α is the pull-back of the

Weil-Petersson form from the moduli space of curves. This follows from

results of Wolpert [Wol86].

The upshot is that there is a choice of metric ωΣ for which the O(r−1)

term in Scal(ωr) has fibrewise mean value −1. From now on this choice of

metric is assumed to be included in the definition of ωr.

4.2.2 The correct choice of Kähler potential φ1

Let Θ1 denote the C∞
0 (X) component of the O(r−1) term in Scal(ωr).

This means that

Scal(ωr) = −1 + r−1(Θ1 − 1) +O(r−2).

It follows from Lemma 4.4 that

Scal(ωr + i∂̄∂r−1φ) = Scal(ωr) + r−1(∆2
V + ∆V )φ+O(r−2). (4.4)

Lemma 4.6. Let Θ ∈ C∞
0 (X). There exists a unique φ ∈ C∞

0 (X) such that

(
∆2
V + ∆V

)
φ = Θ.

Proof. Given a function φ ∈ C∞(X) let φσ denote the restriction of φ to Sσ.

The fibrewise restriction of the operator ∆2
V +∆V is the first order variation

of the scalar curvature of the fibre. Denote the restriction of this operator

to the fibre Sσ by Lσ. Recall from Example 3.4 that

Lσ : L2
k+4(Sσ) → L2

k(Sσ)
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is an isomorphism when considered as a map between spaces of functions

with mean value zero (over Sσ).

Applying this fibrewise certainly gives a unique function φ onX such that

φ has fibrewise mean value zero, for each σ, φσ ∈ C∞(Sσ) and Lσφσ = Θσ,

i.e. (∆2
V + ∆V )φ = Θ. It only remains to check that φ is smooth transverse

to the fibres. (The operator ∆2
V + ∆V is only elliptic in the fibre directions,

so regularity only follows automatically in those directions.)

In fact, this is straight forward. Since φσ = L−1
σ Θσ the required differ-

entiability follows from that of Θ and the fact that Lσ is a smooth family

of differential operators.

Remark. This proof is not meant to suggest that a smooth family of fi-

brewise elliptic operators enjoys the same regularity properties as a gen-

uinely elliptic operator. If, for example, in the above Lemma, Θ ∈ L2
k, then

φσ ∈ L2
k+4(Sσ), but as a function over X, φ ∈ L2

k.

Applying this lemma to Θ = −Θ1 and using equation (4.4) shows that

there exists a unique φ1 ∈ C∞
0 (X) such that the metric

ωr,1 = ωr + i∂̄∂r−1φ1

is an O(r−2) approximate solution to the constant scalar curvature equation:

Scal(ωr,1) = −1 − r−1 +O(r−2).

4.3 The third order approximate solution

Now that the correct metric has been found on the base, the higher order

approximate solutions are constructed recursively. In order to demonstrate

the key points clearly, however, this section does the first step in detail.

The strategy is straightforward, even if the notation sometimes isn’t!

The first step is to find a Kähler potential f1 on the base to deal with the

C∞(Σ) component of the O(r−2) error. That is, so that

Scal(ωr,1 + i∂̄∂f1) = −1 − r−1 + (c+ Θ′
2)r

−2 +O(r−3),

for some constant c, where Θ′
2 has fibrewise mean value zero.

The fact that Kähler potentials on the base affect the scalar curvature

at O(r−2) and no higher order, at least in the case of ωr, is seen as follows.

The potential can be thought of as altering the metric on the base. Since
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the base metric is scaled by r in the definition of ωr, adding the potential

f to ωr is equivalent to adding the potential r−1f to ωΣ. Equation (4.1)

shows that the lowest order effect of ωΣ on the scalar curvature of ωr occurs

at O(r−1). Hence the combined effect is O(r−2).

The second step is to find a Kähler potential φ2 to deal with the remain-

ing O(r−2) error Θ′
2. That is, so that

Scal
(
ωr,1 + i∂̄∂(f1 + r−2φ2)

)
= −1 − r−1 + cr−2 +O(r−3).

The potential φ2 is found in much the same way as φ1 was found above, via

Lemma 4.6.

Both of the potentials f1 and φ2 are found as solutions to linear partial

differential equations. To find the relevant equations, it is important to

understand the linearisation of the scalar curvature map on Kähler potentials

determined by ωr,1 (and the operators determined by the later, higher order,

approximate solutions). To this end, the first lemma in this section deals

with the r dependence of such an operator when the fibrewise metrics are

not necessarily the canonical constant curvature ones. First, some notation.

Notation for Lemma 4.11

Let Ω0 be any closed real (1, 1)-form whose fibrewise restriction is Kähler.

Let Ωσ be the Kähler form on Sσ induced by Ω0. Let ΩΣ be any choice

of metric on the base. As in Lemma 4.1, for large enough r, the form

Ωr = Ω0 + rΩΣ is Kähler. The vertical-horizontal decomposition of the

tangent bundle determined by Ωr depends only on Ω0.

Definition 4.7. The form ΩΣ is a pointwise basis for the horizontal (1, 1)-

forms. Define a function ξ as follows. Write the horizontal-vertical decom-

position of Ω0 (with respect to Ωr) as

Ω0 = Ωσ ⊕ ξΩΣ.

Definition 4.8. The family of fibrewise Kähler metrics Ωσ determines a

Hermitian structure in the vertical tangent bundle. Denote the curvature

of this bundle as FV . Define a function η as follows. Write the horizontal-

vertical decomposition of iFV (with respect to Ωr) as

iFV = ρσ ⊕ ηΩΣ.
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Remark. Since the fibrewise metrics are not the canonical constant curva-

ture ones, this curvature form is not the same as that appearing earlier. If,

instead of any old Ω0 and ΩΣ, the forms ω0 and ωΣ from earlier are used in

both of these definitions, then ξ = −η = θ.

It is also necessary to define a certain operator on functions on the base.

Definition 4.9. Taking the fibrewise mean value of η gives a function πΣη

on the base. Using this, define a fourth order differential operator

DΣ : C∞(Σ) → C∞(Σ),

DΣ(f) = ∆2
Σf − (Scal(ΩΣ) + πΣη)∆Σf,

where ∆Σ is the ΩΣ-Laplacian.

Remark 4.10. The operator DΣ is the linearisation of a nonlinear map on

functions, which is now described. Let(iFV )HH denote the purely horizon-

tal component of iFV with respect to the vertical-horizontal decomposition

determined by Ω0. Notice that this does not depend on the choice of ΩΣ.

Taking the fibrewise mean value of (iFV )HH defines a 2-form on the base Σ

which is again independent of the choice of ΩΣ. The trace of this form with

respect to ΩΣ is precisely the fibrewise mean value of η:

πΣη = ΛΣπΣ(iFV )HH .

This shows exactly how πΣη depends on the choice of ΩΣ, i.e. only through

ΛΣ.

Next, consider varying ΩΣ by a Kähler potential f ∈ C∞(Σ). Denote by

ΛΣ,f the trace operator determined by ΩΣ + i∂̄∂f . The equation

ΛΣ,f =
ΛΣ

1 + ∆Σf

shows that the linearisation at 0 of the map

f 7→ ΛΣ,fπΣ(iFV )HH = πΣη

is −πΣη∆Σ. Combining this with the formula for the linearisation of the

scalar curvature map on curves derived in Example 3.4, shows that DΣ is

the linearisation, at 0, of the map

F : f 7→ Scal(ΩΣ + i∂̄∂f) + πΣη.
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If, instead of using any old Ω0, the definition were made using ω0 from

earlier, then the map F is one which has been described before. It is precisely

the map which was shown to take the value −1 at ωΣ (see section 4.2.1).

Notice that using ω0 and ωΣ to define DΣ gives DΣ = ∆2
Σ + ∆Σ. As in

Example 3.4, this operator is an isomorphism on functions of mean value

zero (when considered as a map between the relevant Sobolev spaces).

The vertical and horizontal Laplacians are defined just as before, with

Ω0 and ΩΣ replacing ω0 and ωΣ respectively (see Definition 4.2). To indicate

that they are defined with respect to different forms (and also a different

vertical-horizontal decomposition of the tangent bundle, notice), the vertical

and horizontal Laplacians determined by Ω0 and ΩΣ are denoted ∆′
V and

∆′
H . The un-primed symbols are reserved for the vertical and horizontal

Laplacians determined by ω0 and ωΣ.

Let L(Ωr) denote the linearisation of the scalar curvature map on Kähler

potentials defined by Ωr. The relevant notation is now in place to state and

prove the following lemma.

Lemma 4.11.

L(Ωr) = (∆
′2
V − Scal(Ωσ)∆

′
V ) + r−1D1 + r−2D2 +O(r−3),

where the operators D1 and D2 depend only on Ω0 and ΩΣ. Moreover, if f

is a function pulled back from Σ,

D1(f) = 0, (4.5)

πΣD2(f) = DΣ(f). (4.6)

Proof. The proof given here is a long calculation. A slightly more concep-

tual proof is described in a following remark. Recall the formula (3.2) for

the linearisation of the scalar curvature map. It involves the Laplacian,

the scalar curvature and the Ricci form of Ωr. Repeating the calculations

that were used when the fibres had constant scalar curvature metrics gives

formulae for these objects. They are, respectively,

∆Ωr = ∆′
V +

∆′
H

r + ξ
, (4.7)

Scal(Ωr) = Scal(Ωσ) +
Scal(ΩΣ) + η

r + ξ
+ ∆Ωr log(1 + r−1ξ), (4.8)

ρ(Ωr) = ρ(Ωσ) + (Scal(ΩΣ) + η) ΩΣ + i∂̄∂ log(1 + r−1ξ). (4.9)
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The result now follows from routine manipulation and expansion of

power series. In particular the following formulae can be verified for D1

and D2:

D1 = 2∆′
V ∆′

H − (∆′
V ξ)∆

′
V ,

D2 = ∆
′2
H − (Scal(ΩΣ) + η)∆′

H − η∆′
V ∆′

H

+
1

2
(∆′

V (ξ2))∆′
V + (∆′

V η)∆
′
H .

The statements about D1(f) and πΣD2(f) for f pulled up from the base

follow from these equations.

Remark. The actual equations for D1 and D2 will not be needed in what

follows. All that will be used is their stated behaviour on functions on the

base as stated in Lemma 4.11. This behaviour can be understood, without

laborious calculation, as follows.

The fact that potentials on the base affect the scalar curvature of Ωr at

O(r−2) and no higher order is discussed at the start of this section. So for

potentials f pulled up from the base D1(f) = 0. The fibrewise mean value

of the O(r−1) term in Scal(Ωr) is

Scal(ΩΣ) + πΣη.

So, after taking the fibrewise mean value, a change of r−1f in ΩΣ gives

a change in πΣ Scal(Ωr) whose O(r−2) term is given by the derivative of

the above expression with respect to Kähler potentials on the base. Hence

πΣD2(f) = DΣ(f).

4.3.1 The correct choice of Kähler potential f1

Denote the C∞(Σ) component of the O(r−2) term of Scal(ωr,1) by Θ2:

πΣ Scal(ωr,1) = −1 − r−1 + r−2Θ2 +O(r−3).

The first step in constructing the O(r−3) approximate solution is to find a

potential f1 ∈ C∞(Σ) which compensates for Θ2, i.e. with

πΣ Scal(ωr,1 + i∂̄∂f1) = −1 − r−1 + cr−2 +O(r−3),

where c is the mean value of Θ2 over Σ (with respect to ωΣ).

Let Lr,1 be the linearisation of the scalar curvature map on Kähler po-

tentials determined by ωr,1. The next result uses Lemma 4.11 to describe

the O(r−2) behaviour of Lr,1.
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Lemma 4.12. Let f ∈ C∞(Σ). Then

πΣLr,1(f) = r−2(∆2
Σ + ∆Σ)f +O(r−3).

Proof. Begin by applying Lemma 4.11 with

Ω0 = ω0 + i∂̄∂r−1φ1,

ΩΣ = ωΣ.

There is a slight difficultly in interpreting the expansion given in Lemma

4.11. The r-dependence of Ω0 means that some of the coefficients in the

O(r−3) piece of that expansion will be r-dependent, a priori making them

of higher order overall.

In fact, this can’t happen. The reason is that all such coefficients come

ultimately from analytic expressions in the fibrewise metrics induced by Ω0

(as is shown, for example, by the calculation described in the proof of Lemma

4.11). These metrics have the form

Ωσ = (1 + r−1∆V φ1)ωσ.

(Here ∆V is the vertical Laplacian determined by ω0.) Since the fibrewise

metric is algebraic in r−1, the coefficients in the expression form Lemma

4.11 are analytic in r−1, i.e. they have expansions involving only nonpositive

powers of r.

This means that the O(r−2) term can simply be read off from the formula

given in Lemma 4.11. This gives

πΣLr,1(f) = r−2DΣ(f) +O(r−3).

As is pointed out in Remark 4.10, for the choice of ωΣ that was determined

whilst finding the O(r−2) approximate solution, DΣ = ∆2
Σ+∆Σ as required.

As Example 3.4 explains, the equation

(∆2
Σ + ∆Σ)f1 = c− Θ2

for f1 has a solution (and a unique one if f1 is also required to have mean

value zero over Σ). Elliptic regularity ensures that f1 is smooth, completing

the first step in finding the O(r−3) approximate solution.
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This leaves

Scal(ωr,1 + i∂̄∂f1) = −1 − r−1 + r−2(c+ Θ′
2) +O(r−3),

where Θ′
2 has fibrewise mean value zero.

4.3.2 The correct choice of Kähler potential φ2

The next step in constructing the O(r−3) approximate solution is to find

a potential φ2 ∈ C∞
0 (X) which compensates for Θ′

2, i.e. with

Scal
(
ωr,1 + i∂̄∂(f1 + r−2φ2)

)
= −1 − r−1 + cr−2 +O(r−3).

Let L′
r,1 be the linearisation of the scalar curvature map on Kähler po-

tentials determined by the metric ωr,1 + i∂̄∂f1. The next result uses Lemma

4.11 to describe the O(1) behaviour of L′
r,1.

Lemma 4.13.

L′
r,1 = ∆2

V + ∆V +O(r−1).

Remark. Again, the symbol ∆V means the vertical Laplacian determined

by the form ω0. This lemma merely says that the O(1) behaviour of L′
r,1 is

the same as that of Lr (see Lemma 4.4).

Proof. Apply Lemma 4.11 with

Ω0 = ω0 + i∂̄∂r−1φ1,

ΩΣ = ωΣ + i∂̄∂r−1f1.

As in the proof of Lemma 4.12, there is a problem with interpreting the

expansion in Lemma 4.11, namely that the r-dependence of Ω0 and ΩΣ

means that the coefficients in the expansion are also r-dependent. As in the

proof of Lemma 4.12, however, this actually causes no difficulty. Both forms

are algebraic in r−1, hence the coefficients in the expansion are analytic in

r−1. Hence the r-dependence of the coefficient of r−n causes changes only

at O(r−n−k) for k ≥ 0. This means that the genuine O(1) behaviour of L′
r,1

is the same as the O(1) behaviour of

∆
′2
V − Scal(Ωσ)∆

′
V .

Here, Ωσ is the metric on Sσ determined by Ω0, i.e.

Ωσ = (1 + r−1∆V φ1)ωσ.
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Since, to O(1), Ωσ and ωσ agree,

Scal(Ωσ) = Scal(ωσ) +O(r−1),

∆′
V = ∆V +O(r−1).

Hence

∆
′2
V − Scal(Ωσ)∆

′
V = ∆2

V + ∆V +O(r−1).

This completes the proof.

Lemma 4.6 implies that there exists a unique φ2 ∈ C∞
0 (X) such that

(∆2
V + ∆V )φ2 = −Θ′

2.

Let ωr,2 = ωr,1 + i∂̄∂(f1 + r−2φ2). Then

Scal(ωr,2) = −1 − r−1 + cr−2 +O(r−3).

4.4 The higher order approximate solutions

This section completes the construction of the higher order approximate

solutions, proving:

Theorem 4.14 (Approximately constant scalar curvature metrics).

Let n be a positive integer. There exist functions f1, . . . , fn−1 ∈ C∞(Σ) and

φ1, . . . , φn ∈ C∞
0 (X) such that the metric

ωr,n = ωr + i∂̄∂

n−1∑

i=1

r−i+1fi + i∂̄∂

n∑

i=1

r−iφi

satisfies

Scal(ωr,n) = −1 +

n∑

i=1

cir
−i +O

(
r−n−1

)
,

for constants ci.

Proof. The strategy for the recursive construction of the higher order ap-

proximations is, hopefully, now clear. As an inductive hypothesis, assume

that an O(r−n) approximate solution has been found of the form

ωr,n−1 = ωr + i∂̄∂

n−2∑

i=1

r−i+1fi + i∂̄∂

n−1∑

i=1

r−iφi,
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where φi ∈ C∞
0 (X) and fi ∈ C∞(Σ). Assume its scalar curvature satisfies

Scal(ωr,n−1) = −1 +

n−1∑

i=1

cir
−i +O

(
r−n

)
,

for constants ci.

The correct choice of Kähler potential fn−1

Denote by Lr,n−1 the linearisation of the scalar curvature map on Kähler

potentials determined by ωr,n−1. Just as in the proof of Lemma 4.12, it can

be shown, using Lemma 4.11, that for a function f pulled up from the base

πΣLr,n−1(f) = r−2
(
∆2

Σ + ∆Σ

)
(f) +O

(
r−3
)
.

This, and Example 3.4, show that there exists fn−1 such that

Scal
(
ωr,n−1 + i∂̄∂r−(n−2)fn−1

)
= −1+

n−1∑

i=1

cir
−i+r−n(cn+Θn)+O

(
r−n−1

)
,

where Θn has fibrewise mean value zero.

The correct choice of Kähler potential φn

Denote by L′
r,n−1 the linearisation of the scalar curvature map on Kähler

potentials determined by ωr,n−1 + i∂̄∂r−(n−2)fn−1. Just as in the proof of

Lemma 4.13, it can be shown, using Lemma 4.11, that

L′
r,n−1 = ∆2

V + ∆V +O
(
r−1
)
.

This, and Lemma 4.6, show that there exists φn such that

Scal
(
ωr,n−1 + i∂̄∂

(
r−(n−2)fn−1 + r−nφn

))
= −1 +

n∑

i=1

cir
−i +O

(
r−n−1

)
.

In fact, it is straight forward to show that the functions fi, φi are unique

subject to the constraints
∫

Σ
fi ωΣ = 0

∫

Sσ

φi ωσ = 0.

This uses the injectivity of the operator discussed in Example 3.4 (acting

on functions with mean value zero).
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It is also possible to calculate the exact values of the constants ci via a

calculation of the mean value of Scal(ωr). Let

volr =
1

2

∫
ω2
r = rA+B

where A = [ω0].[ωΣ] and B = 2−1[ω0]
2, and let

1

2

∫
Scal(ωr)ω

2
r = 2πc1(X).[ωr] = rC +D

where C = 2πc1(X).[ω0] and D = 2πc1(X).[ωΣ]. Then the mean value of

the scalar curvature is

rC +D

rA+B
= −1 +

∑
cir

−i,

where ci = (−1)iA−iBi
(
A−1C −B−1D

)
.

4.5 Summary

Four essential facts were used in the construction of the approximate solu-

tions in Theorem 4.14:

1. The nonlinear partial differential equation

Scal(ωσ) = const.

in the fibre directions has a solution. This enabled ωr,0 to be con-

structed.

2. The linearisation of this equation, at a solution, is surjective onto

functions with mean value zero. This enabled the C∞
0 (X) components

of error terms to be eliminated.

3. The nonlinear partial differential equation

Scal(ωΣ) − ΛΣα = const.

on the base has a solution. This enabled ωr,1 to be constructed.

4. The linearisation of this equation, at a solution, is surjective onto

functions with mean value zero. This enabled the C∞(Σ) components

of error terms to be made constant.
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There are related reasons as to why these facts are important. Firstly,

the fact that the linear operator in 2 is not genuinely surjective, but maps

only onto the functions with mean value zero, is what necessitates an alter-

native approach to the C∞(Σ) components of errors. Secondly, the solution

mentioned in 1 gives rise to the α term in 3.

The surjectivity of the linear operators in 2 and 4 can be viewed in terms

of automorphisms of the solutions in 1 and 3 respectively. This is because

both operators are elliptic with index zero. Hence they are surjective if and

only if they have no kernel (thought of as maps between spaces of functions

with mean value zero). The absence of any kernel is equivalent to there

being no nontrivial family of solutions to the equations in 1 and 3.

Finally, it should be noted that the two parameters r and n appearing

in the approximate solutions are of a very different nature. In particular,

whilst the perturbation to a genuine solution is carried out, n is considered

as fixed, whilst r tends to infinity.
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5Setting

up the

adiabatic

limit



The remaining chapters carry out the analysis necessary to perturb the

families of approximate solutions ωr,n, constructed in the previous chapter,

to genuine solutions. Section 5.1 sets up the problem and discusses using a

parameter dependent inverse function theorem to solve it. In particular it

describes how the solution hinges on certain analytic estimates.

Section 5.2 considers the estimates over a product of a fixed curve with

a flat torus. Although such manifolds obviously admit constant scalar cur-

vature metrics, the analysis is still of interest for two reasons. Firstly, it

shows what behaviour to expect in the general case. Secondly, as is proved

in Chapter 6, the Kähler structure (X,J, ωr,n) locally approaches such a

product as r → ∞. This enables the estimates proved over the product in

Section 5.2 to be patched together to give local analytic estimates over X.

This is also done in Chapter 6. Chapter 7 explains how to prove uniform

global analytic estimates. The proof of Theorem 1.1 is completed in Chapter

8.

5.1 Applying the inverse function theorem

First, some notation. Write gr,n for the metric tensor corresponding to

the Kähler form ωr,n. Each such metric defines Sobolev spaces L2
k(gr,n) of

functions over X. Since the Sobolev norms determined by gr,n, for different

values of r, are equivalent, the spaces L2
k(gr,n) contain the same functions.

The constants of equivalence, however, will depend on r. Similarly the

Ck-norms defined by gr,n can be considered, giving Banach spaces denoted

Ck(gr,n). When the actual norms themselves are not important, explicit

reference to the metrics will be dropped, and the spaces referred to simply

as Ck or L2
k.

Statements like “ar → 0 in Ck(gr,n) as r → ∞,” mean “‖ar‖Ck(gr,n) → 0

as r → ∞.” Notice that both the norm and the object whose norm is being

measured are changing with r. Similarly statements such as “ar is O(r−1)

in L2
k(gr,n) as r → ∞,” mean “‖ar‖L2

k
(gr,n) is O(r−1) as r → ∞.”

The scalar curvature map on Kähler potentials determined by the metric

ωr,n defines a map

L2
k+4 → L2

k, φ 7→ Scal(ωr,n + i∂̄∂φ),

when k ≥ 1. Denote the derivative of this map at 0 by Lr,n. As with Exam-

ple 3.4, this derivative will be shown to be an isomorphism when considered
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modulo the constant functions. In order to apply the inverse function the-

orem it will be necessary to project onto a complement of the constant

functions.

Recall from Remark 3.3 that when the scalar curvature of a Kähler

metric ω is constant, the corresponding linear operator maps into functions

with ω-mean value zero. In the situation considered here, ωr,n has nearly

constant scalar curvature. So it makes sense to try and show that Lr,n gives

an isomorphism after composing with the projection p onto functions with

ωr,n-mean value zero.

Let L2
k,0 denote functions in L2

k with ωr,n-mean value zero. Composing

the scalar curvature map with the projection p gives, for k > 1, a map

Sr,n : L2
k+4,0 → L2

k,0,

Sr,n(φ) = p Scal(ωr,n + i∂̄∂φ).

To complete the proof of Theorem 1.1 it will be shown that for each k and

sufficiently large r there is a unique φ ∈ L2
k+4,0 with Sr,n(φ) = 0.

To see that this will indeed finish the proof, notice that since Scal(ωr,n+

i∂̄∂φ) differs from Sr,n(φ) by a constant, ωr,n + i∂̄∂φ is a constant scalar

curvature metric in the class κr. (Smoothness of φ will follow from the

ellipticity of the scalar curvature map; see Lemma 8.3.)

It is possible to use Lpk-norms in the analysis, rather than just L2
k. This

only requires the proof of one additional lemma. Since this is not necessary

in the proof of Theorem 1.1, however, attention is restricted to the L2
k-norms

throughout.

5.1.1 Approximate solutions in L2
k(gr,n)

By construction of the metrics ωr,n,

Scal(ωr,n) = O
(
r−n−1

)
.

However, at this stage this is meant only in the formal sense described in

Chapter 4. In order to use the inverse function theorem, it is first necessary

to know that Sr,n(0) converges to 0 in L2
k(gr,n) as r → ∞.

The expansions in negative powers of r in Chapter 4 all arise via abso-

lutely convergent power series and algebraic manipulation. This means that

with respect to a fixed metric g,

Scal(ωr,n) = O
(
r−n−1

)
in Ck(g) as r → ∞.
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For example, log(1 + r−1θ) is O(r−1) in Ck(g) because

‖ log(1 + r−1θ)‖Ck ≤
∑

j≥1

r−(j+1)Cj
‖θ‖j

Ck

j
,

= log
(
1 + Cr−1‖θ‖Ck

)
.

where C a constant such that ‖φψ‖Ck ≤ C‖φ‖Ck‖ψ‖Ck .

The same is true with respect to the Ck(gr,n)-norm provided that the

Ck(gr,n)-norm of a fixed function is bounded as r → ∞. (Notice that the

constant C above does not depend on g.) In fact, this is the case. Lengths

of vertical covectors do not change with r, whilst horizontal covectors are

O(r−1/2) as r → ∞. If X were a product, and gr the product metric scaled

by r in the base directions, the Levi-Civita connection would be independent

of r, the horizontal distribution would be parallel, and this would imply the

necessary boundedness immediately.

The difficulty in applying this argument in the general case is that the

Levi-Civita connection does depend on r and the horizontal distribution is

not parallel. It can be shown that the horizontal distribution converges, in a

certain sense, to a parallel distribution, and the boundedness of ‖φ‖Ck(gr,n),

for any φ, follows from this. Since this is a consequence of Theorem 6.1,

which is proved later, the result is stated here, but its proof is deferred (see

Section 6.2). The result also includes a description of the L2
k(gr,n)-behaviour

of Scal(ωr,n) for large r.

Lemma 5.1.

Scal(ωr,n) = O
(
r−n−1

)
in Ck(gr,n) as r → ∞

Scal(ωr,n) = O
(
r−n−1/2

)
in L2

k(gr,n) as r → ∞

The inverse function theorem will be applied to the map

Sr,n : φ 7→ p Scal(ωr,n + i∂̄∂φ).

Hence it is also necessary to know that projection p is uniformly bounded

with respect to the L2
k(gr,n)-norms. This follows from the fact that p is an

L2
k(gr,n)-orthogonal projection, and hence has operator norm 1. The next

result follows immediately from the last.

Lemma 5.2.

Sr,n(0) = O
(
r−n−1/2

)
in L2

k(gr,n) as r → ∞.
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5.1.2 Parameter dependent inverse function theorems

Since Sr,n(0) → 0 in L2
k(gr,n), it might be hoped that the inverse function

theorem guarantees the existence of a function φ such that Sr,n(φ) = 0. This

is indeed the case, although the parameter dependence of the problem means

this is not as straight forward as it might at first appear. An examination

of the proof of the inverse function theorem will help clarify the issues.

Theorem 5.3 (Quantitative inverse function theorem).

• Let F : B1 → B2 be a differentiable map of Banach spaces, whose

derivative at 0, DF , is an isomorphism of Banach spaces, with inverse

P .

• Let δ′ be the radius of the closed ball in B1, centred at 0, on which

F −DF is Lipschitz, with constant 1/(2‖P‖).

• Let δ = δ′/(2‖P‖).

Then whenever y ∈ B2 satisfies ‖y − F (0)‖ < δ, there exists x ∈ B1 with

F (x) = y. Moreover such an x is unique subject to the constraint ‖x‖ < δ′.

Proof. Define a sequence xn ∈ B1 recursively via the Newton-Raphson

method:

x0 = 0

xn+1 = xn + P (y − F (xn))

If the map G : x 7→ x+P (y−F (xn)) is a contraction on some closed ball K

about the origin, this iteration will converge to a solution x, unique in K,

of the equation F (y) = x.

Since

‖G(x) −G(x′)‖ ≤ ‖P‖‖(F −DF )(x) − (F −DF )(x′)‖

G is seemingly a contraction on the ball K about 0 ∈ B1 on which F −DF

is Lipschitz with constant 1/(2‖P‖). It may not map K to itself, however.

Since, for x ∈ K,

‖G(x)‖ ≤ ‖P‖‖(F −DF )(x) − (F −DF )(0)‖ + ‖P‖‖y − F (0)‖,

≤
1

2
‖x‖ + ‖P‖‖y − F (0)‖,

the condition ‖y − F (0)‖ < δ′/(2‖P‖) implies that G : K → K is a genuine

contraction.
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Assume for now that the derivative of the map

Sr,n : L2
k+4,0(gr,n) → L2

k,0(gr,n)

is an isomorphism with inverse denoted Pr,n (this is proved in Chapter 7).

Notice that both the map and the norms used depend on r. The inverse

function theorem can be applied. It guarantees the existence of a δr,n such

that if

‖Sr,n(0)‖L2
k
(gr,n) < δr,n,

then there exists a φ with Sr,n(φ) = 0.

The problem is that even though Sr,n(0) tends to zero in L2
k(gr,n), δr,n

may converge to zero even quicker. It will be shown later that δr,n ≥ Cr−6.

This means that, for n ≥ 6, Lemma 5.2 implies that Sr,n(0) converges to

zero quickly enough for the inverse function theorem to be of use.

5.2 A motivating example

The key step in controlling δr,n is to bound the behaviour of ‖Pr,n‖. The

uniform control of the non-linear pieces proves much easier. This section

discusses this operator over the Kähler product of a fixed high genus curve

with a flat torus.

Whilst such manifolds obviously admit constant scalar curvature Kähler

metrics, the aim is understand the estimates required to apply the inverse

function theorem in the general case. The main conclusion is that ‖Pr,n‖ ≤

Cr2. Going back to the statement of the inverse function theorem given

above, ‖Pr,n‖
−1 appears twice in the definition of δr,n. This suggests that

δr,n ≥ Cr−4, a fact that should still hold in the general case. A weaker

estimate δ ≥ Cr−6 is proved for the general case. This is sufficient so far as

the proof of Theorem 1.1 is concerned.

As mentioned above, the product will serve as a local model for the

general case, meaning uniform estimates proved over the product can be

patched to give uniform estimates over X. To this end, this section will also

prove that various Sobolev inequalities hold uniformly over the product.

5.2.1 The adiabatic limit for a product

Let S × T 2 be the product of a fixed high genus curve S with a flat

torus T 2 = S1 × S1. Let ωS denote the canonical hyperbolic metric on S

and ωT 2 a flat metric on T 2. Define ω′
r = ωS ⊕ rωT 2, which is a Kähler
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metric on S × T 2. Write g′r for the corresponding metric tensor. Primes are

used to distinguish this Kähler structure from the general case considered

in the previous chapter. (This is important in the next chapter, when both

structures are considered simultaneously.)

The scalar curvature map on Kähler potentials determines a map

S′
r : L2

k+4 → L2
k.

From Examples 3.5 and 3.4, its derivative is given by the formula

L′
r = ∆2

S + ∆S + 2r−1∆S∆T 2 + r−2∆2
T 2,

where ∆S is the ωS-Laplacian on S and ∆T 2 is the ωT 2-Laplacian on T 2.

Notice that the scalar curvature of g′r is already constant, so that L′
r

maps into functions with mean value zero. So, unlike the general case, there

is no need to consider an additional projection. Separation of variables

proves the following result.

Proposition 5.4. Let ψ ∈ C∞(S ×T 2) have mean value zero. There exists

a unique function φ ∈ C∞(S×T 2) with mean value zero solving the equation

L′
r(φ) = ψ. (5.1)

There exists a constant C such that whenever ψ and φ have mean value zero

and are related by equation (5.1),

‖φ‖L2(g′r) ≤ Cr2‖ψ‖L2(g′r).

Proof. Let vλ be an L2(gS)-orthonormal basis of eigenvectors for ∆S, with

∆Svλ = λvλ. Let hµ be an L2(gT 2)-orthonormal basis of eigenvectors for

∆T 2 , with ∆T 2hµ = µhµ. Notice that λ, µ ≥ 0.

The functions vλhµ are an L2(g′1)-orthonormal basis for functions over

S × T 2, and, in fact, are eigenfunctions for L′
r: L′

r(vλhµ) = Aλµ(r)vλhµ

where

Aλµ(r) =
(
λ2 + λ

)
+ 2r−1λµ+ r−2µ2.

Notice that unless λ and µ are both zero, Aλµ(r) is non-zero.

Given ψ ∈ C∞(S × T 2) write

ψ =
∑

ψλµvλhµ.
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The condition that ψ has mean value zero is equivalent to ψ00 = 0. For such

ψ define

φ =
∑

Aλµ(r)
−1ψλµvλhµ. (5.2)

where the sum is taken over λ and µ not both zero. Then L′
rφ = ψ. Standard

elliptic regularity results ensure that φ is smooth.

To prove the claim about the L2-norms, begin with the L2(g′1)-norms.

Notice that

‖φ‖2
L2(g′

1
) =

∑
|Aλµ(r)|

−2 |ψλµ|
2 .

Let µ0 denote the smallest non-zero eigenvalue of ∆T 2. For large r, the

smallest value of Aλµ(r) appearing in (5.2) is A0µ0
(r) = r−2µ2

0. This means

that

‖φ‖L2(g′
1
) ≤ r2µ−2

0 ‖ψ‖L2(g′
1
).

To prove the bound holds for L2(g′r)-norms, notice that for any L2 func-

tion χ, ‖χ‖L2(g′r) = r1/2‖χ‖L2(g′
1
). Hence the result follows from the bounds

with L2(g′1)-norms.

The above proof shows that L′
r has an inverse Qr defined, at first, on

smooth functions with mean value zero by equation (5.2):

Qr(ψ) =
∑

Aλµ(r)
−1ψλµvλhµ.

Since ‖Qr(ψ)‖L2(g′r) ≤ Cr2‖ψ‖L2(g′r), Qr extends to a map L2 → L2 on

spaces of functions with integral zero. The following result will show that

Qr extends to a map L2
k → L2

k+4, defined on functions of mean value zero,

and that ‖Qr‖ remains O(r2) when considered in this way.

Lemma 5.5. There exists a constant A such that for all φ ∈ L2
k+4,

‖φ‖L2
k+4

(g′r) ≤ A
(
‖φ‖L2(g′r) + ‖L′

r(φ)‖L2
k
(g′r)

)
.

Remark. For each r, the existence of such a constant follows from ellip-

ticity of L′
r. The point of this result is that the constant can be chosen

independently of r.

Proof. Recall the following standard result concerning interior estimates

from the theory of elliptic operators. Let B be a compact Riemannian

manifold (possibly with boundary), L a linear, order d elliptic differential
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operator on functions over B, and B′ ⊂⊂ B a subdomain. Then there exists

a constant aB,B′,L such that for all φ ∈ L2
k+4(B),

‖φ‖L2
k+d

(B′) ≤ aB,B′,L

(
‖φ‖L2(B) + ‖L(φ)‖L2

k
(B)

)
.

(See, for example, [Aub82].)

Consider the torus (T 2, rgT 2) as the quotient of R
2 by the lattice r1/2Z⊕

r1/2Z. Let m be the smallest integer larger than r1/2. Cover R
2 with discs

of radius 1 with centres at points whose coordinates are integer multiples

of m−1r1/2. This cover descends to a cover of T 2, by O(r) discs, which in

turn gives a cover of S × T 2. Denote this cover by {B′
i}. Repeating the

procedure, beginning with slightly larger discs of radius 1.01 with the same

centres as before gives another cover {Bi} of S × T 2.

The above elliptic estimate applies to the operator L′
r over the pairs

B′
i ⊂⊂ Bi. Since all such pairs are isometric and have geometry independent

of r, the constant a is independent of i and r.

For any φ ∈ L2
k+4(g

′
r),

‖φ‖2
L2

k+4
(g′r) ≤

∑

i

‖φ‖2
L2

k+4
(B′

i)
,

≤ 2a2
∑

i

(
‖φ‖2

L2(Bi)
+ ‖L′

r(φ)‖2
L2

k
(Bi)

)
,

≤ 10a2
(
‖φ‖2

L2(g′r) + ‖L′
r(φ)‖2

L2
k
(g′r)

)
,

≤ 10a2
(
‖φ‖L2(g′r) + ‖L′

r(φ)‖L2
k
(g′r)

)2
.

The extra factor of 5 comes from the fact that at most 5 of the Bi intersect

at any one point.

Theorem 5.6. The operator L′
r : L

2
k+4 → L2

k is a Banach space isomor-

phism, when considered between spaces of functions with mean value zero.

There exists a constant C such that, for all large r, and all ψ ∈ L2
k with

mean value zero, the inverse operator, Qr, satisfies

‖Qr(ψ)‖L2
k+4

(g′r) ≤ Cr2‖ψ‖L2
k
(g′r).

Proof. All that remains to be proved is that the inverse Qr, defined so far

only on L2 functions with mean value zero, extends to a linear operator

L2
k+4 → L2

k on functions with mean value zero, and is bounded as claimed.
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This follows from the L2-bounds (Proposition 5.4) and the uniform elliptic

estimate (Lemma 5.5). For a smooth function ψ with mean value zero,

‖Qr(ψ)‖L2
k+4

(g′r) ≤ A
(
‖Qr(ψ)‖L2(g′r) + ‖L′

rQr(ψ)‖L2
k
(g′r)

)
,

≤ A(Cr2 + 1)‖ψ‖L2
k
(g′r).

Hence Qr extends and is bounded as claimed.

5.2.2 Uniform Sobolev inequalities over a product

This section proves that certain Sobolev inequalities hold uniformly over

a product, in preparation for proving the same result in general later on.

Lemma 5.7. For indices k,l, and q ≥ p satisfying k−4/p ≥ l−4/q there is

a constant c (depending only on p, q, k and l) such that for all φ ∈ Lpk(g
′
r),

‖φ‖Lq

l
(g′r) ≤ c‖φ‖Lp

k
(g′r).

Remark. Again, for fixed r, the existence of such a c is a standard theorem

concerning Sobolev spaces. The point of this result is that the constant

can be taken independent of r. Notice that there are more stipulations on

the indices (namely, q ≥ p) than appear in the standard result. When this

condition is not met, but k−4/p ≥ l−4/q, there is still obviously a Sobolev

inequality, but not a uniform constant. This is discussed later.

Proof. It is a standard result that, if B is any compact Riemannian manifold,

possibly with boundary, there is a constant cB such that for all functions

φ ∈ Lql (B),

‖φ‖Lq

l
(B) ≤ cB‖φ‖Lp

k
(B).

(See e.g. [Aub82].) Divide (S × T 2, g′r) up into pieces {Bi} as in the proof

of Lemma 5.5. The above Sobolev inequality applies over each Bi, with cB

independent of i since all the pieces are isometric.

For any φ ∈ Lpk(g
′
r),

‖φ‖q
Lq

l
(g′r)

≤
∑

i

‖φ‖q
Lq

l
(Bi)

,

≤ cqB

∑

i

‖φ‖q
Lp

k
(Bi)

,

≤ cqB

∑

i




k∑

j=0

∫

Bi

|∇jφ|p



q/p

.
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Recall the following inequality: for positive ai, and m ≥ 1,

∑

i

ami ≤

(
∑

i

ai

)m
.

Applying this to the inequality above it, and using the fact that q ≥ p gives

‖φ‖q
Lq

l
(g′r)

≤ cqB



∑

i

k∑

j=0

∫

Bi

|∇jφ|p



q/p

≤ 5cqB‖φ‖
q
Lp

k
(g′r)

.

which proves the result. (Again, the factor of 5 is due to at most of the Bi

intersecting at any one point.)

Lemma 5.8. For indices p, k satisfying k − 4/p > 0, there is a constant c

depending only on k and p, such that for all φ ∈ Lpk(g
′
r),

‖φ‖C0 ≤ c‖φ‖Lp

k
(g′r).

Proof. From the standard theory (again, see [Aub82]), on any compact Rie-

mannian manifold B, possibly with boundary, there exists a constant cB

such that for φ ∈ Lpk(B) supported away from the boundary,

‖φ‖C0 ≤ cB‖φ‖Lp

k
(B).

For x ∈ T 2 let D̄(x, 1) be a closed disc in T 2, centred at x and of radius

1 in the metric rgT 2 . Let Bx = S × D̄(x, 1). Let χx be the translates of

a smooth cut-off function χ0 supported in some D̄(x0, 1) which is 1 on a

neighbourhood of x0 and satisfies 0 ≤ χ0 ≤ 1.

As each χx is essentially the same smooth function, there is a constant

a, such that for any φ ∈ Lpk(g
′
r),

‖χxφ‖Lp

k
(Bx) ≤ a‖φ‖Lp

k
(g′r).

The functions χxφ are supported away from the boundary in the isometric

manifolds Bx Hence, by the result quoted above,

‖φ‖C0 = sup
x

‖χxφ‖C0 ,

≤ sup
x
cB‖χxφ‖Lp

k
(Bx),

≤ acB‖φ‖Lp

k
(g′r).
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5.2.3 Miscellaneous results

Two further lemmas concerning the product (S × T 2, g′r) are needed for

later developments.

Lemma 5.9. For a tensor α ∈ Ck(T ∗⊗i), as r → ∞,

‖α‖Ck(g′r) = O(1).

Moreover, if α is pulled up from the base T 2,

‖α‖Ck(g′r) = O
(
r−i/2

)
.

Proof. These statements follow from the fact that g′r is a product metric:

The Levi-Civita connection of g′r depends only on those of gS and rgT 2 , and

hence is independent of r. The only r dependence in Ck(g′r), then, comes

from the inner product on T ∗. It is fixed for vertical (i.e. in the S directions)

covectors and scales horizontal (i.e. in the T 2 directions) covectors by r−1/2.

This, and the fact that the horizontal-vertical splitting is g′r-parallel, gives

the result.

Lemma 5.10. There exists a constant C such that for any u ∈ Ck+4(T 2),

φ ∈ L2
k+4(S × T 2),

‖L′
r(uφ) − uL′

r(φ)‖Lp

k
(g′r) ≤ C

k+4∑

j=1

‖∇ju‖C0(g′r) ‖φ‖Lp

k+4
(g′r),

= O
(
r−1/2

)
‖φ‖Lp

k+4
(g′r).

Proof. This follows from the fact that the coefficients of L′
r are constant

in the T 2 directions. The bound is O(r−1/2) by Lemma 5.9, since all the

derivatives of u are pulled back from T 2.

5.2.4 Relationship with analysis over S × R
2

This section is a digression describing the link between analysis over

(S × T 2, g′r) and over (S × R
2, gS ⊕ gR2), and the relationship between the

results proved above and those already in the literature. The material here

will not be used in the proof of Theorem 1.1.

First, notice that the above proofs of uniform Sobolev inequalities all

involve cutting (S×T 2, g′r) up into isometric pieces. Nowhere does it matter
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that this involves only finitely many pieces. The same arguments, then,

which prove that a Sobolev inequality holds uniformly over (S × T 2, g′r),

show that the inequality also holds over the non-compact manifold S × R
2.

Conversely, if a Sobolev inequality holds over S × R
2 then it must hold

uniformly over (S × T 2, g′r). To see this, notice that a function over (S ×

T 2, g′r) can be considered as a periodic function over S × R
2, with period

r1/2 along both axes in R
2. Pick cut-off functions fr : R → R which are 1 on

[0, r1/2], supported in [−1, r1/2+1] and whose behaviour on [r1/2, r1/2+1] and

[−1, 0] is independent of r. Define χr : R
2 → R by χr(x, y) = fr(x)fr(y).

Given φ ∈ Lpk(g
′
r), consider it as a periodic function over S × R

2, then

χrφ ∈ Lpk(S × R
2).

There is a constant C such that

‖φ‖Lp

k
(g′r) ≤ ‖χrφ‖Lp

k
(S×R2) ≤ C‖φ‖Lp

k
(g′r).

C is independent of r, since the behaviour of χr, outside of the fundamental

domain, is essentially independent of r. From these inequalities it follows

that any Sobolev inequality which holds over S × R
2 must hold uniformly

over (S × T 2, g′r).

Not all Sobolev inequalities which hold over R
4 hold over S×R

2. As an

example, consider the inequality

‖φ‖Lq ≤ c‖∇φ‖Lp ,

where p < 4, and q = 4p/(4 − p). This inequality holds for compactly

supported functions over R
4 (as is proved in, for example, [Aub82]).

To show that it cannot hold over S×R
2, consider the following functions.

Let φR : R
2 → R be radially symmetric, 1 on D(0, R), supported in D(0, R+

1) and with behaviour for R ≤ |x| ≤ R+1 which is independent of R. Then,

after pulling φR back to S × R
2,

‖φR‖Lq(S×R2) = O(R2/q),

whilst

‖∇φR‖Lp(S×R2) = O(R1/p).

Any p with 0 < p < 2 gives 2/q > 1/p. Hence, for these values of p, no such

value of c exists.

Such examples can be constructed because of the close relationship be-

tween certain Sobolev inequalities and the isoperimetric inequality. With
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two of the four dimensions compactly “wrapped up” in S × R
2 there is

sometimes a different interaction between the size of the boundary of a do-

main and the size of its interior than the dimension of the ambient space

might suggest.

Finally, the analysis over S × R
2 which appears here is reminiscent of

that which occurs in Floer theory over “tubes” Y ×R (where Y is a compact

three-manifold). For this reason, the proofs given above mimic those in the

literature on Floer theory. In particular the book [Don02a] has been followed

closely here.
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6Local

analysis



This chapter returns to the study of the approximate solutions ωr,n con-

structed in Chapter 4. It proves that the product of a fixed curve with a flat

torus, as considered in the previous section, is a local model for the Kähler

structure (X,J, ωr,n) as r → ∞. It then uses this model to prove various

local analytic estimates (Sobolev inequalities, the elliptic estimate for Lr,n)

hold uniformly in r.

The notation used here is all defined in Chapter 4. In particular the forms

ω0, ωr and the function θ are defined in the proof of Lemma 4.1, whilst the

higher order approximate solutions ωr,n are constructed in Theorem 4.14.

6.1 Constructing the local model

Let D ⊂ Σ be a holomorphic disc centred at σ0. Since D is contractible,

X|D is diffeomorphic to S ×D. The horizontal distribution of ω0 is trivial

when restricted to Sσ0
. By applying a further diffeomorphism if necessary

the identification X|D ∼= S × D can be arranged so that the horizontal

distribution on Sσ0
coincides with the restriction to Sσ0

of the TD summand

in the splitting

T (S ×D) ∼= TS ⊕ TD. (6.1)

For each value of r, there are two Kähler structures on S ×D of imme-

diate interest. The first comes from simply restricting the Kähler structure

(X,J, ωr) to X|D. The complex structure has the form J = Jσ ⊕ JD with

respect to the splitting (6.1), where JD is the complex structure on D and

Jσ is the varying complex structure on the fibres.

The second is the natural product structure. With respect to (6.1), let

J ′ = JS ⊕ JD,

ω′
r = ωS ⊕ rωD.

where ωD is the flat Kähler form on D agreeing with ωΣ at the origin,

and JS , ωS are the complex structure and Kähler form on the central fibre

S = Sσ0
. Denote by g′r the corresponding metric on S ×D.

Notice that, by construction, the two complex structures agree on the

central fibre, whilst the Kähler forms agree there except for the θωΣ term.

Theorem 6.1. For all ε > 0, σ0 ∈ Σ, there exists a holomorphic disc

D ⊂ Σ, centred at σ0, such that for all sufficiently large r, over X|D,

‖(J ′, ω′
r) − (J, ωr,n)‖Ck(g′r) < ε.
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Proof. First notice that, by Lemma 5.9, for any holomorphic disc D ⊂ Σ,

over X|D,

‖ωr,n − ωr‖Ck(g′r) ≤
n−1∑

i=1

‖i∂̄∂r−i+1fi‖Ck(g′r) +
n∑

i=1

‖i∂̄∂r−iφi‖Ck(g′r),

= O(r−1).

Since ωr,n − ωr is O(r−1) in Ck(g′r), it suffices to prove the result just for

(J, ωr).

Choose a holomorphic disc D centred at σ0. The splitting (6.1) is par-

allel, implying that

∇i(J − J ′) ∈ End(TS) ⊗ T ∗(S ×D)⊗i.

The only changes in length as r varies come from the T ∗ factor. Write

∇i(J − J ′) = αi + βi with respect to the splitting

T ∗(S ×D)⊗i ∼= T ∗S⊗i ⊕
( (
T ∗S⊗i−1 ⊗ T ∗D

)
⊕ · · · ⊕ T ∗D⊗i

)
.

αi ∈ T ∗S⊗i, βi ∈
(
T ∗S⊗i−1 ⊗ T ∗D

)
⊕ · · · ⊕ T ∗D⊗i.

The metric g′r does not change in the S-directions, so |αi|g′r is indepen-

dent of r. Since J = J ′ on the central fibre, reducing the size of D ensures

that

|αi|g′r <
ε

2(k + 1)
.

The metric g′r scales lengths of cotangent vectors by r−1/2 in the D-

directions. So |βi|g′r = O(r−1/2). For large enough r,

|βi|g′r <
ε

2(k + 1)
.

Hence

‖∇i(J − J ′)‖C0(g′r) <
ε

k + 1
.

Summing from i = 0, . . . k proves

‖J ′ − J‖Ck(g′r) < ε.

To prove ‖ω′
r−ωr‖Ck(g′r) < ε it is enough to prove the same result for the

metrics gr, g
′
r (since the Kähler forms can be recovered algebraically from

the metric tensors via the complex structures).

72



Let u1, u2 be a local gS-orthonormal frame for TS and v1, v2 be a local

gD-orthonormal frame for TD. Recall gr induces a different horizontal-

vertical splitting of the tangent bundle of S ×D, which is independent of r.

With respect to this splitting,

gr = gσ ⊕ (r + θ)gΣ,

where gσ is the hyperbolic metric on the fibre Sσ, and gΣ the metric on the

base. Write vj = ηj + ξj with respect to the horizontal-vertical splitting

induced by gr (ηj is horizontal, ξj is vertical). With respect to the g′r-

orthonormal frame u1, u2, r
−1/2v1, r

−1/2v2, the matrix representative for gr

is 


gσ(ui, uj) r−1/2gσ(ui, ξj)

r−1/2gσ(uj , ξi)
(
1 + r−1θ

)
gΣ(ηi, ηj) + r−1gσ(ξi, ξj)




This means that, in a g′r-orthonormal frame, gr − g′r has the matrix

representative



gσ(ui, uj) − δij 0

0 gΣ(ηi, ηj) − δij


+ r−1/2A+ r−1B.

for fixed matrices A and B.

The top left corner of the first term vanishes along the central fibre. Just

as in the proof of ‖J ′− J‖ < ε, this can be made arbitrarily small in Ck(g′r)

by shrinking D and taking r large.

The bottom right corner of the first term is a function of the D-variables

only. By construction it vanishes at the origin. The C0(g′r)-norm of this

piece is just the conventional C0-norm of the function gΣ(ηi, ηj) − δij and

hence can be made arbitrarily small by shrinking D.

The derivatives of this piece are all in the D-directions. The length of

the i-th derivative is O(r−i/2) due to the scaling of g′r in the D-directions.

Hence the Ck(g′r) norm of this piece can be made arbitrarily small by taking

r large (once D has been shrunk to deal with the C0 term).

Finally, since A and B are independent of r, the Ck(g′r)-norms of the

tensors they represent are bounded as r → ∞. So r−1/2A, r−1B → 0 in

Ck(g′r), which proves the theorem.

Whilst not particularly hard to prove (the only difficulties being no-

tational!), Theorem 6.1 provides the essential local analytic input in the
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adiabatic limit. It justifies the statement that as r → ∞ the local geometry

is dominated by that of the fibre, and leads to the principle that local ana-

lytic results (such as the Sobolev inequalities of the previous chapter) which

are true of the product are true of (X,J, ωr,n). There are several examples

of this in what follows.

6.2 Uniform local analytic estimates

This section explains how to use the local model to prove that certain local

analytic estimates hold over (X,ωr,n) uniformly in r.

6.2.1 Uniform equivalence of norms

Two different metrics g and g′ on the same manifold may determine

equivalent Ck- or Lpk-norms. For example, suppose that

‖g − g′‖Ck(g′) ≤ 1/2.

Then there exist positive constants b and B, such that for all functions φ,

b‖φ‖′ ≤ ‖φ‖ ≤ B‖φ‖′.

Here, ‖ · ‖ denotes either the Ck- or Lpk-norm determined by g and ‖ · ‖′ the

corresponding norm determined by g′.

To see this, first notice that the bound on g−g′ gives a C0(g′)-bound on

the difference of the metrics on the cotangent bundle. This follows from the

fact that the metric on covectors induced by g is, locally, given by g−1. (It

is here that it is necessary that ‖g−g′‖C0(g′) be bounded by 1/2 rather than

some arbitrary constant.) It follows that the difference in induced metrics

on any bundle of tensors is bounded in C0(g′).

Next, recall the discussion in the proof of Lemma 3.8 where it is shown

how a Ck bound on g − g′ gives a Ck−1 bound on ∇−∇′, the difference of

the corresponding Levi-Civita connections. Combining this with the bound

on the difference of pointwise norms shows Ck-norms defined by g and g′

are equivalent. Since the difference in volume forms determined by g and g′

is also bounded, the corresponding Lpk-norms are also equivalent.

Notice, moreover, that the constants of equivalence found by this proce-

dure do not depend on g or g′, merely on the upper bound for ‖g′−g‖Ck(g′).

One immediate application of this observation is to the behaviour of gr,n-

Banach space norms of tensors as r → ∞.
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Lemma 6.2. For a tensor α ∈ Ck(T ∗⊗i), as r → ∞,

‖α‖Ck(gr,n) = O(1).

Moreover, if α is pulled up from the base,

‖α‖Ck(gr,n) = O
(
r−i/2

)
.

Proof. By Lemma 5.9, the result is true for the local model. Let D be a

disc over which Theorem 6.1 applies for ε = 1/2. Since Ck(gr,n) and Ck(g′r)

are uniformly equivalent over X|D, the result holds for Ck(gr,n) over X|D.

Cover Σ with finitely many discs Di. The result holds for Ck(gr,n) over each

X|Di
and hence over all of X.

This now gives a belated proof of Lemma 5.1, which describes the be-

haviour of ‖Scal(ωr,n)‖ in Ck(gr,n) and L2
k(gr,n) as r → ∞.

Proof of Lemma 5.1. By the previous result, for any function φ, ‖φ‖Ck(gr,n)

is bounded as r → ∞. As is explained at the start of Section 5.1.1, this

ensures that Scal(ωr,n) is O(r−n−1) in Ck(gr,n).

To deduce the result concerning L2
k-norms, notice that the g′r-volume

form is r times a fixed form. Hence, over a disc D where Theorem 6.1

applies, the gr,n-volume form is O(r) times a fixed form. So the volume of

X|D with respect to gr,n is O(r). Cover Σ with finitely many such discs, Di.

The volume volr,n of X, with respect to gr,n, satisfies

volr,n ≤
∑

vol(X|Di
) = O(r).

Since, for smooth φ,

‖φ‖L2
k
(gr,n) ≤ (volr,n)

1/2‖φ‖Ck(gr,n)

and since volr,n is O(r), Scal(ωr,n) is O(r−n−1/2) in L2
k(gr,n).

6.2.2 Patching and uniform estimates

To transfer other results from the product to X, a slightly more delicate

patching argument is required. First the general set-up is described. Then

it is applied to transfer the uniform estimates, proved over S×T 2 in Section

5.2, to X.
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The general setup

Set ε = 1/2 and cover Σ in discs D1, . . . ,DN satisfying the conclusions

of Theorem 6.1. Let χi be a partition of unity subordinate to the cover

Di. Given a result which holds uniformly over the product, the partition of

unity will be used to patch the local estimates together to obtain a global

uniform estimate.

The first thing to control is the errors introduced by the partitions of

unity. Let φ ∈ Lpk.

‖χiφ‖Lp

k
(gr,n) ≤ ‖χi‖Ck(gr,n)‖φ‖Lp

k
(gr,n).

As a consequence of Lemma 6.2, ‖χi‖Ck(gr,n) is bounded as r → ∞. Hence

there exists a constant a such that, for any i = 1, . . . ,N ,

‖χiφ‖Lp

k
(gr,n) ≤ a‖φ‖Lp

k
(gr,n). (6.2)

That is, the errors introduced by the patching can be controlled uniformly.

The local model (S × D, gS ⊕ rgD) of Theorem 6.1 is an isometrically

embedded submanifold of (S×T 2, gS⊕rgT 2), which was considered in Section

5.2. The function χiφ is supported in S ×Di and so can be thought of as a

function over S × T 2. The results from Section 5.2 can then be applied.

Uniform estimates

Everything is now in place to transfer uniform estimates from (S ×

T 2, J ′, g′r) to (X,J, ωr,n).

Lemma 6.3. For indices k, l, and q ≥ p satisfying k − 4/p ≥ l− 4/q there

is a constant c (depending only on p, q, k and l) such that for all φ ∈ Lpk
and all sufficiently large r,

‖φ‖Lq

l
(gr,n) ≤ c‖φ‖Lp

k
(gr,n).

Proof. Recall the analogous result for (S × T 2, g′r) (Lemma 5.7). Using the

partition of unity χi from above,

‖φ‖Lq

l
(gr,n) ≤

∑
‖χiφ‖Lq

l
(gr,n),

≤ const.
∑

‖χiφ‖Lq

l
(g′r).

where the second inequality uses the uniform equivalence of the gr,n- and

g′r-Sobolev norms.
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Considering χiφ as a function over S × T 2, Lemma 5.7 gives

‖χiφ‖Lq

l
(g′r) ≤ const.‖χiφ‖Lp

k
(g′r).

Using the uniform equivalence of the gr,n- and g′r-Sobolev norms again gives

‖χiφ‖Lp

k
(g′r) ≤ const.‖χiφ‖Lp

k
(gr,n).

Finally, combining these inequalities and inequality (6.2), which uniformly

controls the errors caused by patching, gives

‖φ‖Lq

l
(gr,n) ≤ const.

∑
‖χiφ‖Lp

k
(gr,n) ≤ const.‖φ‖Lp

k
(gr,n).

Lemma 6.4. For indices p, k satisfying k − 4/p ≥ 0 there is a constant c,

depending only on k and p, such that for all φ ∈ Lpk and all sufficiently large

r,

‖φ‖C0 ≤ c‖φ‖Lp

k
(gr,n).

Proof. Recall the analogous result for (S × T 2, g′r) (Lemma 5.8). The same

patching argument as above transfers the uniform estimate to (X,J, ωr,n).

Lemma 6.5. There is a constant A, depending only on k, such that for all

φ ∈ L2
k+4 and all sufficiently large r,

‖φ‖L2
k+4

(gr,n) ≤ A
(
‖φ‖L2(gr,n) + ‖Lr,n(φ)‖L2

k
(gr,n)

)
.

Proof. Recall the analogous result for L′
r over (S × T 2, g′r) (Lemma 5.5).

This time the patching argument must be combined with Lemma 3.11 which

proves that the linearisation of the scalar curvature map is uniformly con-

tinuous with respect to the Kähler structure used to define it. To apply this

result, it is necessary to observe that the curvature tensor of g′r is bounded

in Ck(g′r). Also, ε must be taken suitably small in Theorem 6.1.

Using the uniform equivalence of g′r- and gr,n-Sobolev norms, and with

χi denoting a partition of unity subordinate to the cover Di:

‖φ‖L2
k+4

(gr,n) ≤ const.
∑

‖χiφ‖L2
k+4

(g′r),

≤ const.
∑(

‖φ‖L2(g′r) + ‖L′
r(χiφ)‖L2

k
(g′r)

)
,
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where the last inequality uses Lemma 5.5.

Since the χi are functions on the base, by Lemma 5.10 (which describes

the effect of pulling χi past L′
r),

‖L′
r(χiφ) − χiL

′
r(φ)‖L2

k
(g′r) ≤ const.r−1/2‖φ‖L2

k
(g′r).

Using this, the uniform equivalence of g′r- and gr,n-Sobolev norms, and

Lemma 3.11 to replace L′
r with Lr,n gives

‖φ‖L2
k+4

(gr,n) ≤ const.
(
‖φ‖L2(gr,n) + ‖φ‖L2

k
(g′r) + ‖Lr,n(φ)‖L2

k
(gr,n)

)
.

This proves the result for k = 0. It also provides the inductive step giving

the result for all k.
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7Global

analysis



The aim of this chapter is to prove the following result. (Recall that L2
k,0 is

the Sobolev space of functions with gr,n-mean value zero, whilst p is projec-

tion onto such functions.)

Theorem 7.1. For all large r and n ≥ 3, the operator

pLr,n : L2
k+4,0 → L2

k,0

is a Banach space isomorphism. There exists a constant C, such that for all

large r and all ψ ∈ L2
k,0, the inverse operator Pr,n satisfies

‖Pr,nψ‖L2
k+4

(gr,n) ≤ Cr3‖ψ‖L2
k
(gr,n).

The key point in Theorem 7.1 is the uniform control over ‖Pr,n‖. Unlike

the uniform Sobolev inequalities and elliptic estimate proved in the previ-

ous chapter, which are essentially local results, controlling the inverse Pr,n

of pLr,n is a global issue. Indeed it is only because of global considerations

(compactness of X, no holomorphic vector fields) that such an inverse ex-

ists. This means that the local model used in the previous chapter is not

directly useful. Instead a global model is used to make calculations more

straightforward.

7.1 The global model

The approximate solutions π : (X,ωr,n) → Σ are not Riemannian submer-

sions. The amount they differ from being so, however, tends to zero as r

tends to infinity. This section uses this observation to relate the metrics ωr,n

to a family of Riemannian submersions which are easier to calculate with.

First recall that the form ω0 (whose fibrewise restriction is the hyperbolic

metric of that fibre) gives a vertical-horizontal decomposition of the tangent

bundle of X. Define a Riemannian metric hr on X by using the fibrewise

metrics determined by ω0 on the vertical vectors, and the metric rωΣ on the

horizontal vectors.

By construction,

gr,0 = hr + a

for some tensor a ∈ Γ(T ∗X ⊗ T ∗X), independent of r, which is essentially

given by the horizontal components of ω0.

Since T ∗X is scaled by r−1/2 in the metric hr it follows immediately that

for all r sufficiently large,

‖gr,0 − hr‖C0(hr) < 1/2. (7.1)
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Moreover, since

‖gr,n − gr,0‖C0(hr) = O
(
r−1
)
,

inequality (7.1) holds with gr,0 replaced by gr,n. In particular this means

that the L2-norms on tensors determined by hr and gr,n are equivalent with

constants of equivalence independent of r:

Lemma 7.2. Let E denote any bundle of tensors. There exist positive

constants k and K such that for all t ∈ Γ(E) and all sufficiently large r,

k‖t‖L2(hr) ≤ ‖t‖L2(gr,n) ≤ K‖t‖L2(hr).

7.2 The lowest eigenvalue of D∗D

It is more convenient to work first with the positive self adjoint elliptic

operator D∗D . Here D = ∂̄◦∇ where ∂̄ is the ∂̄-operator of the holomorphic

tangent bundle and D∗ is the L2-adjoint of D . Notice that D∗D depends

on ωr,n, and so on r (and n). This section finds a lower bound for its first

non-zero eigenvalue. First, however, its kernel is described.

Lemma 7.3. There are no nonzero holomorphic vector fields on X.

Proof. Recall that the fibres and base of X have high genus. The short

exact sequence of holomorphic bundles

0 → V → TX → π∗TΣ → 0

gives a long exact sequence in cohomology

0 → H0(X,V ) → H0(X,TX) → H0(X,π∗TΣ) → · · ·

Hence it suffices to prove that H0(X,V ) and H0(X,π∗TΣ) both vanish.

H0(X,V ) = 0 as the fibres admit no nonzero holomorphic vector fields.

Since π is a submersion with compact fibres, π∗π
∗TΣ = TΣ. Composing π

with the projection Σ → pt. shows that π∗TΣ has the same space of global

sections as TΣ. So H0(X;π∗TΣ) = 0 also.

Corollary 7.4. ker D∗D = R. Equivalently,

D
∗
D : L2

k+4,0 → L2
k,0

is an isomorphism.
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Proof. ker D∗D = ker D is those functions with holomorphic gradient. The

previous lemma implies such functions must be constant. The second state-

ment now follows from the fact that D∗D is an elliptic formally self adjoint

index zero operator.

To find a lower bound for the first non-zero eigenvalue of D∗D , similar

bounds are first found for the Hodge Laplacian and for the ∂̄-Laplacian on

sections of the holomorphic tangent bundle.

Lemma 7.5. There exists a positive constant C1 such that for all φ with

gr,n-mean value zero and for all sufficiently large r,

‖dφ‖2
L2(gr,n) ≥ C1r

−1 ‖φ‖2
L2(gr,n) .

Remark. That this inequality corresponds to a lower bound on the first

eigenvalue of ∆ follows from the existence of a complete L2-orthonormal

basis of eigenvectors for ∆, with the kernel spanned by constants.

Proof. Using Lemma 7.2,

‖dφ‖L2(gr,n) ≥ const. ‖dφ‖L2(hr) .

There exists a constant m such that φ−m has h1-mean value zero. (In fact,

as hr is a Riemannian submersion scaled by r in the horizontal directions,

the condition of having hr-mean value zero is independent of r.) Since m is

constant, dφ = d(φ−m).

Let | · |hr
denote the pointwise inner product defined by hr. By definition

of hr it follows that

|d(φ−m)|2hr
= |dV (φ−m)|2hr

+ |dH(φ−m)|2hr
,

= |dV (φ−m)|2h1
+ r−1 |dH(φ−m)|2h1

,

≥ r−1 |d(φ−m)|2h1
,

where dV , dH denote the vertical and horizontal components of d. Moreover,

the volume forms satisfy dvol(hr) = rdvol(h1). Hence,

‖d(φ−m)‖2
L2(hr) ≥ ‖d(φ−m)‖2

L2(h1) .

Now φ−m has h1-mean value zero. Let c be the first eigenvalue of the

h1-Laplacian. Then

‖d(φ−m)‖2
L2(h1) ≥ c ‖φ−m‖2

L2(h1) ,

= cr−1 ‖φ−m‖2
L2(hr) .
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Using Lemma 7.2 again gives

‖φ−m‖2
L2(hr) ≥ const. ‖φ−m‖2

L2(gr,n)

≥ const. ‖φ‖2
L2(gr,n)

where the second inequality follows from the fact that φ has gr,n-mean value

zero.

Putting the pieces together shows that there exists a positive constant

C1 such that

‖dφ‖L2(gr,n) ≥ C1r
−1 ‖φ‖2

L2(gr,n)

as required.

Lemma 7.6. There exists a positive constant C2 such that for all ξ ∈ Γ(TX)

and for all sufficiently large r,

∥∥∂̄ξ
∥∥2

L2(gr,n)
≥ C2r

−2 ‖ξ‖2
L2(gr,n) .

Remark. Notice that, since ker ∂̄ = 0 (Lemma 7.3 proves that X admits

no holomorphic vector fields), there is no need to impose the condition

ξ ∈ (ker ∂̄)⊥ analogous to that in the previous result where φ was required

to have gr,n-mean value zero.

Proof. The proof is similar to that of Lemma 7.5 above. By Lemma 7.2,

∥∥∂̄ξ
∥∥2

L2(gr,n)
≥ const.

∥∥∂̄ξ
∥∥2

L2(hr)
.

Notice that ∂̄ξ ∈ Γ(T ∗X ⊗ TX) has four components under the splitting

induced by the vertical-horizontal decomposition of TX. Considering the

behaviour of hr on these components gives

∣∣∂̄ξ
∣∣2
hr

≥ r−1
∣∣∂̄ξ
∣∣2
h1
. (7.2)

Using this and the relationship dvol(hr) = rdvol(h1) gives

∥∥∂̄ξ
∥∥2

L2(hr)
≥
∥∥∂̄ξ

∥∥2

L2(h1)
.

Let c be the first eigenvalue of the ∂̄-Laplacian determined by the metric

h1. Then ∥∥∂̄ξ
∥∥2

L2(h1)
≥ c ‖ξ‖2

L2(h1)
.
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Considering the behaviour of hr on the horizontal and vertical components

of ξ shows that

|ξ|2h1
≥ r−1 |ξ|2hr

.

Hence,

‖ξ‖2
L2(h1) ≥ r−2 ‖ξ‖2

L2(hr)

Finally, using Lemma 7.2 to convert back to the L2(gr,n)-norm of ξ, and

putting all the pieces together shows that there exists a positive constant

C2 such that ∥∥∂̄ξ
∥∥2

L2(gr,n)
≥ C2r

−2 ‖ξ‖2
L2(gr,n)

as required.

Lemma 7.7. There exists a constant C such that whenever φ has gr,n-mean

value zero and r is sufficiently large,

‖Dφ‖2
L2(gr,n) ≥ Cr−3 ‖φ‖2

L2(gr,n) .

Proof. Combining Lemmas 7.5 and 7.6 shows that whenever φ has gr,n-mean

value zero,

∥∥∂̄∇φ
∥∥2

L2(gr,n)
≥ C2r

−2‖∇φ‖2
L2(gr,n),

= C2r
−2‖dφ‖2

L2(gr,n),

≥ C1C2r
−3‖φ‖2

L2(gr,n).

7.3 A uniformly controlled inverse

The section proves that (for all large r and n ≥ 3) pLr,n is invertible between

spaces of functions with mean value zero. It also converts the lower bound

for the first non-zero eigenvalue of D∗D into an upper bound for the norm

of the inverse Pr,n of pLr,n.

Lemma 7.8. There is a constant A, depending only on k, such that for all

φ ∈ L2
k+4 and for all sufficiently large r,

‖φ‖L2
k+4

(gr,n) ≤ A
(
‖φ‖L2(gr,n) + ‖D∗

D(φ)‖L2
k
(gr,n)

)
.
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Proof. Recall equation (3.3):

Lr,n(φ) = D
∗
D(φ) + ∇ Scal(ωr,n) · ∇φ

Since Scal(ωr,n) → 0 in Ck(gr,n), Lr,n − D∗D converges to zero in operator

norm calculated with respect to the L2
k(gr,n)-Sobolev norms. Hence the

estimate follows from the analogous result for Lr,n (Lemma 6.5).

Theorem 7.9. The operator

D
∗
D : L2

k+4,0 → L2
k,0

is a Banach space isomorphism. There exists a constant K, such that for

all large r and all ψ ∈ L2
k,0, the inverse operator Qr satisfies

‖Qrψ‖L2
k+4

(gr,n) ≤ Kr3‖ψ‖L2
k
(gr,n).

Proof. The inverse Qr exists by Corollary 7.4. It follows from the lower

bound on the first non-zero eigenvalue of D∗D (Lemma 7.7 applied to φ =

Qr(ψ)) that there is a constant C such that for all ψ ∈ L2
k,0,

‖Qr(ψ)‖L2(gr,n) ≤ Cr3‖ψ‖L2(gr,n).

Applying Lemma 7.8 to φ = Qrψ extends this bound to the one required.

Before converting this into a proof of Theorem 7.1, a lemma is proved

showing that invertibility is an open condition.

Lemma 7.10. Let D : B1 → B2 be an bounded invertible linear map of

Banach spaces with bounded inverse Q. If L : B1 → B2 is another linear

map with

‖L−D‖ ≤ (2‖Q‖)−1,

then L is also invertible with bounded inverse P satisfying

‖P‖ ≤ 2‖Q‖.

Proof. By assumption,

‖(LQ− 1)‖ ≤
1

2

Hence
∑

(LQ−1)j converges to an operator R satisfying LQR = 1, ‖R‖ ≤ 2.

So P = QR is a right inverse for L with ‖P‖ ≤ 2‖Q‖. Repeat the argument

with 1 −QL to find a left inverse. This completes the proof.
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The pieces are now in place to prove Theorem 7.1 which is stated at the

start of this chapter.

Proof of Theorem 7.1. Since

(Lr,n − D
∗
D)φ = ∇ Scal(ωr,n) · ∇φ,

there exists a constant c such that, in operator norm computed with respect

to the gr,n-Sobolev norms,

‖pLr,n − D
∗
D‖ ≤ cr−n−1.

So for n ≥ 3, and for large enough r,

‖pLr,n − D
∗
D‖ ≤ (2‖Qr‖)

−1.

Lemma 7.10 shows that pLr,n is invertible and gives the upper bound

‖Pr,n‖ ≤ 2‖Qr‖ ≤ Cr3

for some C.

7.4 An improved bound

It should be possible to improve on this estimate. For example, Theorem

5.6 shows that, over a Kähler product,

‖Pr‖ ≤ Cr2.

The above proof of Theorem 7.1 concatenates two eigenvalue estimates, each

of which is saturated only when applied to an eigenvector corresponding to

the first eigenvalue. The functions which get closest to saturating the first

estimate (Lemma 7.5) have gradients which can be controlled more efficiently

than is done in the proof of the second estimate (Lemma 7.6).

For example, in the product case, the first eigenspace of the Laplacian

consists, for large r, of functions on the base. These functions have horizontal

gradients. The splitting of the tangent bundle into horizontal and vertical

components is, over the product at least, a holomorphic splitting. So, if φ is

a function on the base, then ∂̄∇φ has purely horizontal vector and covector

factors. This means that the estimate (7.2) appearing in the proof of Lemma

7.6 can be improved, for ξ = ∇φ, to

∣∣∂̄∇φ
∣∣2
hr

=
∣∣∂̄∇φ

∣∣2
h1
,
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thus gaining a power of r.

In general, it should be possible to obtain a better bound for ‖Pr,n‖ by

examining this interplay between the two eigenvalue estimates. An alterna-

tive way to improve the bound might be to consider D as a whole, rather

than factor by factor. The additional complication that appears here is that

D = ∂̄∇ depends on the metric via ∇, unlike the operators ∂̄ and d consid-

ered above. This metric dependence could be dealt with by estimating the

resulting r dependence. However, the bound proved above is sufficient to

complete the proof of Theorem 1.1. This is done in the next chapter.
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8Completing

the proof



The previous chapter proves that the linearisation pLr,n of Sr,n is an isomor-

phism with inverse Pr,n which is O(r3). The final step needed to apply the

inverse function theorem is to control the nonlinear operator Sr,n − pLr,n.

8.1 Controlling the nonlinear terms

Denote by Scalr,n the scalar curvature map on Kähler potentials determined

by ωr,n:

Scalr,n(φ) = Scal(ωr,n + i∂̄∂φ)

Recall that Sr,n = p Scalr,n. Denote by Nr,n = Sr,n − pLr,n the nonlinear

terms of Sr,n.

Lemma 8.1. Let k ≥ 3. There exists positive constants c and K, such that

for all φ, ψ ∈ L2
k+4 with ‖φ‖L2

k+4
, ‖ψ‖L2

k+4
≤ c and all r sufficiently large,

‖Nr,n(φ) −Nr,n(ψ)‖L2
k
≤ Kmax

{
‖φ‖L2

k+4
, ‖ψ‖L2

k+4

}
‖φ− ψ‖L2

k+4

where gr,n-Sobolev norms are used throughout.

Proof. By the mean value theorem,

‖Nr,n(φ) −Nr,n(ψ)‖L2
k
(gr,n) ≤ sup

χ∈[φ,ψ]
‖(DNr,n)χ‖‖φ − ψ‖L2

k+4
(gr,n) (8.1)

where (DNr,n)χ is the derivative of Nr,n at χ.

Now

DNr,n = p(Lr,n)χ − pLr,n

where (Lr,n)χ is the linearisation of Scalr,n at χ. In other words, (Lr,n)χ

is the linearisation of the scalar curvature map determined by the metric

ωr,n + i∂̄∂χ. Since

‖χ‖L2
k+4

≤ max
{
‖φ‖L2

k+4
, ‖ψ‖L2

k+4

}
, (8.2)

for a suitable choice of c > 0 Lemma 3.12 can be applied to the metrics ωr,n

and ωr,n + i∂̄∂χ. As k ≥ 3 the condition on the indices in Lemma 3.12 is

met. Notice also that Lemma 3.12 requires the constants in the gr,n-Sobolev

inequalities to be uniformly bounded — which is proved in Lemmas 6.3 and

6.4 — and the Ck(gr,n)-norm of the curvature of ωr,n to be bounded above

— which follows from Theorem 6.1 and Lemma 3.8.

The outcome is that

‖(Lr,n)χ − Lr,n‖ ≤ const.‖χ‖L2
k+4

(gr,n).
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The map p is uniformly bounded (an L2
k(gr,n)-orthogonal projection even);

hence

‖(DNr,n)χ‖ ≤ const.‖χ‖L2
k+4

(gr,n).

The result now follows from this and inequalities (8.1) and (8.2).

8.2 Applying the inverse function theorem

The pieces are finally in place to apply the inverse function theorem.

Theorem 8.2. For all sufficiently large r and k ≥ 3, there exists φ ∈ L2
k+4

with Scal(ωr + i∂̄∂φ) constant.

Proof. For all sufficiently large r, and k, n ≥ 3 the map Sr,n : L2
k+4(gr,n) →

L2
k(gr,n) has the following properties:

1. Sn,r(0) = O
(
r−n−1/2

)
in L2

k(gr,n), by Lemma 5.1.

2. The derivative of Sr,n at the origin is an isomorphism with inverse Pr,n

which is O(r3). This is proved in Theorem 7.1.

3. There exists a constant K such that for all sufficiently small M , the

nonlinear piece Nr,n of Sr,n is Lipschitz with constant M on a ball of

radius KM . This follows directly from Lemma 8.1.

Recall the statement of the inverse function theorem (Theorem 5.3). The

second and third of the above properties imply that the radius δ′r,n of the

ball about the origin on which Nr,n is Lipschitz with constant (2‖Pr,n‖)
−1

satisfies

δ′r,n ≥ const. r−3

for some positive constant and all large r. As δr,n = δ′r,n(2‖Pr,n‖)
−1 it follows

that

δr,n ≥ const. r−6

for some positive constant and all large r.

Hence for ψ ∈ L2
k with

‖Sr,n(0) − ψ‖L2
k
(gr,n) ≤ const. r−6

the equation Sr,n(φ) = ψ has a solution. In particular, the first of the above

properties implies that, for n ≥ 6 and all large r, the equation Sr,n(φ) = 0

has a solution. Since Scal(ωr,n + i∂̄∂φ) differs from Sr,n(φ) by a constant,

the result follows.
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8.3 Regularity

The final step is to check that the solution obtained via the inverse function

theorem is in fact smooth.

Lemma 8.3. Let (X,ω) be a Kähler manifold and S the scalar curvature

map on Kähler potentials. Let k ≥ 2. If φ ∈ Ck,α satisfies S(φ) ∈ Ck,α then

φ ∈ Ck+4,α.

Proof. The function S(φ) is defined by S(φ) = ∆φV where ∆φ is the Lapla-

cian of the metric ω + i∂̄∂φ and V = − log det(g + Φ) with Φ being the

symmetric tensor associated to the real (1, 1)-form i∂̄∂φ.

Since φ ∈ Ck,α, ∆φ is a linear second order elliptic operator with co-

efficients in Ck−2,α. By elliptic regularity (see e.g. [Aub82], page 87) and

assumption on S(φ), V ∈ Ck,α.

The map φ 7→ − log det(g + Φ) is nonlinear, second order and elliptic.

Such maps also satisfy a regularity result (see e.g. [Aub82], page 86); since

V ∈ Ck,α, this gives φ ∈ Ck+2,α. This in turn implies that ∆φ has Ck,α

coefficients meaning that, in fact, V ∈ Ck+2,α and so φ ∈ Ck+4,α.

By Theorem 8.2, for all k ≥ 3, there exists φ ∈ L2
k+4 with Scal(ωr+i∂̄∂φ)

constant. For k high enough, it follows from the Sobolev embedding theorem

that L2
k+4 →֒ C2,α. Iteratively applying the previous regularity result gives

φ ∈ C l,α for all l and so φ is smooth.

This completes the proof of Theorem 1.1.
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9Extensions



This chapter discusses two possible extensions of Theorem 1.1 and the dif-

ficulties involved in proving them.

9.1 Higher dimensional varieties

The most obvious generalisation of Theorem 1.1 is to consider higher di-

mensional fibrations π : X → B where X is a compact connected complex

manifold, and π is a holomorphic submersion. Bearing in mind the summary

at the end of Chapter 4, the following is a list of conditions on π : X → B

under which the same arguments used to prove Theorem 1.1 may prove the

existence of constant scalar curvature metrics:

1. Let X be a Kähler manifold with no nonzero holomorphic vector fields.

Let κ0 ∈ H1,1(X) be a Kähler class; its restriction to each fibre Fb =

π−1(b), denoted κb, is a Kähler class for that fibre.

2. For every b ∈ B, assume that the class κb contains a unique con-

stant scalar curvature metric ωb; moreover, assume that ωb depends

smoothly on b. Let ω be a Kähler form representing κ0; then for each

b there is a unique function φb on Fb with mean value zero such that

the fibrewise restriction of ω + i∂̄∂φb = ωb. The smoothness assump-

tion ensures that the φb fit together to give a smooth function φ on

X, so ω0 = ω + i∂̄∂φ is a Kähler form whose fibrewise restriction has

constant scalar curvature.

3. The metrics ωb give a Hermitian structure in the vertical cotangent

bundle V ∗ and hence also in the line bundle ΛmaxV ∗. Denote its cur-

vature F . Taking the fibrewise mean value of the horizontal-horizontal

component of iF (with respect to the metric ω0 described above) de-

fines a form α ∈ Ω1,1(B). Assume that there is a metric ωB on the

base solving the equation Scal(ωB) − Λα = const.; moreover, assume

that there are no nontrivial deformations of ωB through cohomologous

solutions to this equation.

The proof of the following should be very similar to that of Theorem 1.1.

Conjecture 9.1. Under the above conditions, for all large r, the Kähler

class

κr = κ0 + r[ωB]

contains a constant scalar curvature Kähler metric.
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It should also be possible to relax the condition that X have no nonzero

holomorphic vector fields. This is only needed to ensure the weaker condition

that just constant functions have holomorphic gradient.

There is a more unsatisfactory aspect about the above list of conditions.

They involve solving a strange partial differential equation on the base. Not

only is it unfamiliar, it depends on the whole manifold X, and not just on

B. The conditions would seem more natural if 3 could be replaced by the

condition that the base admitted a constant scalar curvature metric, with

no nontrivial cohomologous deformations through constant scalar curvature

metrics.

Indeed, from the algebro-geometric viewpoint (and assuming the con-

jectural equivalence between stably polarised varieties, and constant scalar

curvature metrics discussed in Chapter 1), the conditions would then cor-

respond to X being a family of stable varieties parametrised by a stable

variety. These are conditions under which the stability of X could reason-

ably be expected, at least with respect to a polarisation corresponding to

κr. One reason to believe this is that the analogous statement is true for

holomorphic bundles: a family of stable bundles over (F,ωF ) parametrised

by B gives, for all large r, a stable bundle over (F ×B,ωF ⊕ rωB).

This suggests that perhaps it should be possible to prove the existence

of constant scalar curvature Kähler metrics with condition 3 above replaced

by the following.

3′. Assume that there is a Kähler metric ωB with constant scalar cur-

vature. Assume, moreover, that there is no nontrivial infinitesimal

deformation of ωB through cohomologous constant scalar curvature

Kähler metrics.

Conjecture 9.2. Let X satisfy conditions 1, 2, and 3′ above. Then, for all

large r, the Kähler class

κr = κ0 + r[ωB]

contains a constant scalar curvature Kähler metric.

Alternatively condition 3 may itself have an algebro-geometric interpre-

tation. Namely, X may be stable with respect to the polarisation κ0 +r[ωB]

if the fibres are stably polarised by the restriction of κ0 and if the base is
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also stably polarised, not with respect to [ωB ], but rather some other po-

larisation constructed from [ωB] and the push down of the vertical tangent

bundle of X.

9.2 Holomorphic Lefschetz fibrations

A holomorphic Lefschetz fibration on a compact connected complex surface

X is a holomorphic surjection π : X → P
1 which is a submersion away from

a finite number of points pk. Moreover, there are holomorphic coordinates

centred at each pk in which the map π has the form

(z,w) 7→ zw

Away from the pk, X is locally biholomorphic (preserving π) to the surfaces

under consideration in this thesis. At each pk, however, the fibres develop

nodal singularities.

A strong generalisation of Theorem 1.1 would be to include holomor-

phic Lefschetz fibrations with generic fibres of genus at least 2. This would

greatly increase the number of surfaces covered by the result. Indeed any

projective surface is birational to a holomorphic Lefschetz fibration. The

changes needed in the proof, however, are substantial. Even the approxi-

mate solutions fail to go over easily: the fibrewise hyperbolic metrics become

singular at the nodes.

To rectify this the metric may be adjusted on a neighbourhood of each

node. The key step will be to find a metric on the model (z,w) 7→ zw

which has zero scalar curvature and is asymptotic, in the correct sense, to

the singular metric on X (i.e. the metric constructed from the fibrewise

hyperbolic metrics and a large multiple of the metric on the base). Scaling

this metric by a small parameter ε means that interpolation between the

singular metric on X and the model metric near a node can be done over

smaller and smaller neighbourhoods. Since the local model is scalar-flat, its

scalar curvature does not blow up during this rescaling. This gives a family

of nonsingular metrics depending on parameters r and ε. If the asymptotics

of the local model are correct, the scalar curvature of this metric should

approach minus one as r → ∞ and ε→ 0.

Finding the correct asymptotics and model metric will be hard problems.

It may be possible to use the toric symmetry of (z,w) 7→ zw to simplify mat-

ters. Abreu [Abr03] and Guillemin [Gui94] demonstrate that calculations

are much more straightforward in the toric case.
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Also, a similar problem is considered in part of [GW00]. The authors

there are concerned with elliptic K3 surfaces. An approximation to the

Ricci-flat metric on such a surface is obtained by gluing together a metric

on the smooth part of the fibration which is Ricci-flat on the fibres, with a

model “Ooguri-Vafa” metric near the singular fibres. This construction is

very close to that outlined above and studying it closely would certainly be

beneficial.

There are other problems in converting the proof of Theorem 1.1 to

apply to holomorphic Lefschetz fibrations besides finding an approximate

solution. It is perhaps wisest, however, to find the approximate solution

before worrying about perturbing it.
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