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Abstract

This is a survey of the symplectic part of [7]. It is known that a
hyperbolic manifold of even dimension is the base of a bundle whose
total space admits a natural symplectic form ([11, 3]). We use this
together with a construction resembling that of the Kummer surface
to produce a simply-connected symplectic 6-manifold with vanishing
first Chern class but no compatible complex structure. The role of
the manifold-with-involution—the complex torus in Kummer’s origi-
nal construction—is in our case played by a beautiful hyperbolic 4-
manifold discovered by Davis [4].

1 Introduction

This article gives a survey of some of the ideas of [7]. The goal is to de-
scribe the construction of a simply-connected symplectic 6-manifold which
has vanishing first Chern class, but admits no compatible integrable complex
structure. This is, to the best of our knowledge, the first such example to ap-
pear in the literature. The construction combines hyperbolic geometry and
a resolution-of-singularities argument reminiscent of the Kummer surface.
(The article [7] also gives an analogous construction of simply-connected
complex threefolds with trivial canonical bundle, but which admit no sym-
plectic forms. We do not describe this here.)

It follows from the theory of coadjoint orbits that every hyperbolic 2n-
manifold M is the base of a fibration X → M whose total space is a sym-
plectic manifold—see §2.1. This can also be seen as a special case of the
work of Reznikov [11] concerning symplectic structures on twistor spaces.
There, Reznikov considers more general metrics satisfying a curvature in-
equality. Since we need only the hyperbolic case, we do not describe this
here. (For more information on this see also the discussion in [8], which
focuses on this inequality in the 4-dimensional case and the related work of
Davidov–Muškarov–Grantcharov [3].)

For n ≥ 3, these symplectic manifolds have c1 a positive multiple of
the symplectic class—the symplectic analogues of Fano varieties, if you will.
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When n = 2, the first Chern class vanishes, giving symplectic “Calabi–
Yaus”.

The fundamental group of a symplectic manifold built this way is equal
to the fundamental group of the hyperbolic base and so this does not give
simply-connected compact examples directly. To get around this we use
a construction analogous to that of the Kummer surface. We use a spe-
cial hyperbolic 4-manifold, called the Davis manifold, to build a symplectic
6-manifold with an involution. Dividing by the involution kills the funda-
mental group and leaves a symplectic orbifold with vanishing first Chern
class. We then resolve the singularities to give a smooth simply-connected
symplectic manifold with c1 = 0. This manifold has b3 = 0 and so cannot
support a Kähler structure with c1 = 0. (Simply-connected Kähler man-
ifolds with c1 = 0 in fact have holomorphically trivial canonical bundle,
hence b3 ≥ 2 because of the existence of a holomorphic volume form.)

2 From hyperbolic to symplectic manifolds

2.1 A hyperbolic coadjoint orbit

Given a Lie group G and a coadjoint orbit O ⊂ g∗, it is a standard fact that
O carries a natural symplectic structure. Given u, v ∈ g and a ∈ O, the
symplectic form at a evaluated on the vectors in TaO corresponding to u, v
is simply a([u, v]). We will apply this general fact to the group of isometries
of hyperbolic 2n-dimensional space.

The group of orientation-preserving isometries of hyperbolic space Hm

can be identified with SO(m, 1), the orientation-preserving linear isomor-
phisms of Rm+1 which also preserve the Minkowski metric x2

0−x2
1−· · ·−x2

m.
The Lie algebra so(m, 1) is the space of (m + 1) × (m + 1) matrices of the
form (

0 ut

u A

)
(1)

where u is a column vector in Rm and A ∈ so(m). Those elements with
u = 0 generate so(m) ⊂ so(m, 1), which correspond to rotations of Hm

about a fixed point. The Killing form is definite on so(m, 1) and so gives an
equivariant isomorphism so(m, 1) ∼= so(m, 1)∗. It follows that adjoint and
coadjoint orbits can be identified.

We now restrict to the case when m = 2n is even. Consider the adjoint
orbit of

ξ =
(

0 0
0 J0

)
where J0 ∈ so(2n) is a choice of almost complex structure on R2n (i.e.,
J2

0 = −1). The stabiliser of ξ is U(n). We write Z for the corresponding
orbit (or Z2n when we need to emphasise the value of n).
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Thought of as a coadjoint orbit, Z is symplectic. The identification
Z2n
∼= SO(2n, 1)/U(n) shows dimZ2n = n(n + 1). It fibres naturally over

hyperbolic spaceH2n ∼= SO(2n, 1)/ SO(2n) with fibre isomorphic to the sym-
metric space SO(2n)/U(n). This space can be identified with the collection
of linear orthogonal complex structures on R2n inducing a fixed orientation—
that is to say orthogonal endomorphisms J of R2n with J2 = −1 and such
that a basis of the form v1, Jv1, . . . , vn, Jvn gives a fixed orientation. It
follows that Z is the twistor space of H2n, although we don’t directly use
twistor methods here.

We next find an almost complex structure on Z which is compatible with
its symplectic structure. To do this we will use an equivariant description
of the tangent bundle.

Lemma 1. There is an isomorphism of U(n)-representation spaces:

so(2n, 1) ∼= u(n)⊕ Λ2(Cn)∗ ⊕ Cn.

Given a point z ∈ Z with stabiliser U(n) ⊂ SO(2n, 1) there is a U(n)-
equivariant isomorphism

TzZ ∼= Λ2(Cn)∗ ⊕ Cn, (2)

in which Λ2(Cn)∗ is tangent to the fibre of the projection Z → H2n.
Under this isomorphism, the symplectic form on TzZ is a positive multi-

ple of the standard form on Λ2(Cn)∗⊕Cn induced by the Euclidean structure
on Cn.

Proof. There is a U(n)-equivariant isomorphism so(2n) ∼= u(n) ⊕ Λ2(Cn)∗.
To see this, write so(2n) ∼= Λ2(R2n)∗. Given a choice of almost complex
structure on R2n, any real 2-form a can be written uniquely as a = α+β+ β̄
where α ∈ Λ1,1

R is a real (1, 1)-form and β ∈ Λ2,0. Identifying a with (α, β)
gives a U(n)-equivariant decomposition Λ2

R
∼= Λ1,1

R ⊕ Λ2,0. Now, via the
metric, Λ1,1

R is identified with the skew-Hermitian matrices u(n) and this
gives the claimed isomorphism.

There is also an SO(2n)-equivariant isomorphism so(2n, 1) ∼= so(2n) ⊕
R2n. In the above form (1) the so(2n) summand is given by u = 0 whilst
the R2n summand by A = 0. Combining these two completes the proof of
the isomorphism (2).

Next we take care of the symplectic form. By U(n)-equivariance, the
form on TzZ must be proportional under (2) to the form induced by the
Euclidean structure on Cn. To show the constant of proportionality is posi-
tive, first check that the forms are genuinely equal in the case n = 1, where
so(2, 1) ∼= u(1)⊕C as a U(1)-representation. This amounts to the fact that
Z2 = H2 with symplectic form the hyperbolic area form. Next, use induc-
tion and the fact that the decompositions of so(2n, 1) and so(2n+2, 1) from
above are compatible with the obvious inclusions of the summands induced
by a choice of Cn ⊂ Cn+1.
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We define an SO(2n, 1)-invariant almost complex structure J on Z de-
fined by declaring (2) to be a complex linear isomorphism. Notice that, by
Lemma 1, J is compatible with the symplectic structure on Z.

With respect to J the tangent bundle splits TZ = V ⊕ H as a sum
of complex vector bundles with V ∼= Λ2H∗, corresponding to (2). The
sub-bundle V is those vectors tangent to the fibres of Z → H2n. We re-
mark in passing that in the twistorial picture, this splitting is simply the
decomposition of TZ induced by the Levi–Civita connection of H2n. From
this point of view, the almost complex structure J is the (non-integrable)
“Eells–Salamon” structure [5], given by reversing the (integrable) “Atiyah–
Hitchin–Singer” structure [1] in the vertical directions.

Lemma 2. c1(Z2n) = (2− n)c1(H).

Proof. This follows from TZ = Λ2H∗ ⊕H along with the fact that for any
complex rank n vector bundle E, c1(Λ2E) = (n− 1)c1(E).

We next determine the symplectic class of Z. First, consider the re-
striction of the symplectic structure to the fibres of Z → H2n. It follows
from (2) that the fibres are symplectic and almost-complex submanifolds.
Moreover, the stabiliser SO(2n) ⊂ SO(2n, 1) of a point x ∈ H2n acts on
the fibre Fx over x preserving both these structures. As mentioned above,
Fx ∼= SO(2n)/U(n) is a symmetric space (the space of linear orthogonal
complex structures on TxH

2n inducing a fixed orientation). The standard
theory of symmetric spaces gives Fx a symmetric Kähler structure. It fol-
lows from SO(2n)-equivariance that this must agree with the restriction of
the symplectic and almost complex structures from Z.

It is also standard that the symmetric Kähler structure on SO(2n)/U(n)
comes from a projective embedding. In this particular case, we can describe
this as follows. Let E → F denote the “tautological” bundle over F =
SO(2n)/U(n). I.e., each point of F is a complex structure on R2n; the fibre
of E at a point j ∈ F is the complex vector space (R2n, j). The bundle
detE∗ is ample and c1(detE∗) = −c1(E) is represented by the symmetric
symplectic form on F .

In our situation, the splitting (2) tells us that the tautological bundle
of the fibre Fx is simply H|Fx . It follows that on restriction to a fibre, the
symplectic class agrees with −c1(H). However, topologically, Z ∼= F ×H2n

is homotopic to F . Since their fibrewise restrictions agree, it follows that
−c1(H) is equal to the symplectic class of Z. Hence, writing ω for the
symplectic form on Z, we have:

Proposition 3. c1(Z2n) = (n− 2)[ω].
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2.2 Compact quotients

The symplectic form and almost-complex structure on Z as well as the
splitting TZ = V ⊕H and identification V ∼= Λ2H∗ are SO(2n, 1)-invariant.
It follows that all these arguments, in particular Proposition 3, apply equally
to smooth quotients of Z2n by subgroups of SO(2n, 1). Let Γ ⊂ SO(2n, 1)
be the fundamental group of a compact hyperbolic 2n-manifold M . Γ acts
by symplectomorphisms on Z2n to give as quotient a symplectic manifold
of dimension n(n + 1). It fibres Z2n/Γ → M as the twistor space of M .
In this way we can use compact hyperbolic manifolds to produce compact
symplectic manifolds.

When n = 1, Z2/Γ = M , the symplectic form is the hyperbolic area
form and we have simply the recovered the hyperbolic surface itself.

When n ≥ 2 the situation is more interesting. For n = 2, the fibre
SO(4)/U(2) is the 2-sphere. So the quotient Z4/Γ is a 6-manifold which is
the total space of a 2-sphere bundle over M . Moreover, Proposition 3 says
c1(Z4/Γ) = 0 and so hyperbolic 4-manifolds lead to symplectic “Calabi–
Yau” manifolds. This was seemingly first observed in [8]. That article
also describes a more general approach for constructing symplectic forms
on the total space of S2-bundles over 4-manifolds, which involves certain
SO(3)-connections, called definite connections. From that point of view, the
Levi–Civita connection on Λ+ → H4 is an example of a definite connection.

Remark 4. It will be important in what follows to note that when n = 2,
not only do the symplectic manifolds have c1 = 0, but they actually have
a preferred section of the almost canonical bundle. This is because of the
isomorphism (2) which in the case of n = 2 implies

Λ3T ∗z Z
∼= Λ2(C2)∗ ⊗ Λ2(C2)

Thus the almost canonical bundle over Z is not just trivial, but trivial in a
natural SO(4, 1)-invariant way. It follows that the almost canonical bundle
of the compact quotients also have natural trivialisations.

When n ≥ 3, Proposition 3 says that compact hyperbolic 2n-manifolds
give compact symplectic manifolds for which c1 is a positive multiple of
[ω] (for n ≥ 3). These might be considered as symplectic analogues of Fano
varieties in algebraic geometry. Recall that dimZ2n = n(n+1) so the lowest
dimension of “symplectic Fano” which can be achieved in this way is 12. In
this case, the fibration over M6 has fibres SO(6)/U(3) ∼= CP3.

We remark that, for n ≥ 2, no compact manifold produced in this way
can be Kähler. This is because, for m > 2 no discrete co-compact lattice in
SO(m, 1) can arise as the fundamental group of a compact Kähler manifold.
In particular, the “Fanos” arising from hyperbolic manifolds of dimension at
least 6 are non-Kähler. These examples (originally appearing in Reznikov’s
article [11]) are, to the best of our knowledge, the first non-Kähler symplectic
“Fano” manifolds.
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2.3 A Kähler description

In what follows, it will be important to have an alternative description of Z in
the case of H4. In fact, Z has an integrable complex structure which is com-
patible with the symplectic form. This complex structure is not SO(4, 1)-
invariant (otherwise it would descend to all quotients) but is only invariant
under the smaller group SO(4).

This can be described as follows. We denote by Y the total space of
O(−1) ⊕ O(−1) over CP1; write π : Y → CP1 for the bundle projection.
There is a map p : Y → C2⊕C2 ∼= C4 given by adding the mapsO(−1)→ C2.
We can define a Kähler metric on Y by pulling back the metrics from CP1

and C4:
ω = π∗ωFS + p∗ωC4 .

The points (x, y) and (z, w) of C2 span the same line if and only if
xw − yz = 0. It follows that the image of p is the quadric cone Q =
{xw − yz = 0}. The map p : Y → Q is called the small resolution of Q.

(Strictly speaking, there are two small resolutions, depending on whether
one identifies C2 ⊕ C2 ∼= C4 by sending ((x, y), (z, w)) to (x, y, z, w) or to
(x, z, y, w). This latter gives another map p′ : Y → Q. There is no biholo-
morphism of Y which swaps p and p′, so they are genuinely inequivalent
resolutions. For more details see, for example, the article [12] which gives a
more thorough description of the small resolutions.)

The group SO(4,C) of complex linear isomorphisms of C4 with determi-
nant 1 and preserving the quadratic form xw − zy acts on Q. This action
lifts to a holomorphic action on the resolution. If we want to also preserve
the Kähler form, however, we must restrict to SO(4,C) ∩ U(4). The Her-
mitian and complex forms determine a conjugation map on C4, the real
subspace fixed by the conjugation is the copy of R4 ⊂ C4 where the two
forms agree. From this it follows that SO(4,C)∩U(4) ∼= SO(4). Here SO(4)
acts on C4 ∼= R4 ⊕ iR4 by extending the standard action on R4 by complex
linearity. (If we choose coordinates in which the complex quadratic form is
given by z2

1 + · · ·+ z2
4 , the decomposition C4 ∼= R4⊕ iR4 just corresponds to

z = Re z + i Im z.)
Projecting onto the real subspace gives a surjection t : Q → R4. Away

from the origin the fibres are two-spheres. The map lifts to the small res-
olution where it becomes a genuine S2-bundle t : Y → R4. This map is
SO(4)-equivariant and so we can see Y in a similar fashion to Z → H4.
Given this similarity the following is not surprising.

Proposition 5. There is an SO(4)-equivariant symplectomorphism between
Y and Z.

This was proved first in [8] and then in a different way in [7]. We omit
the details here.
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3 A simply-connected symplectic Calabi–Yau

For the rest of this survey we focus on the construction of a simply-connected
non-Kähler symplectic Calabi–Yau 6-manifold, which appears in [7]. The
discussion above shows that a hyperbolic 4-manifold carries a 2-sphere bun-
dle whose total space is naturally a symplectic “Calabi–Yau” manifold, with
c1 = 0. It is not possible to apply this directly to obtain a simply-connected
compact example because, of course, compact hyperbolic manifolds have
large fundamental group. To get around this problem we use a tactic re-
sembling Kummer’s construction of a K3 surface.

3.1 The Kummer construction

We begin by briefly recalling Kummer’s construction. Let A ∼= C2/Z4 be
a complex torus. The involution z 7→ −z descends to A where it fixes 16
points. The resulting quotient A/Z2 is singular, but simply-connected as a
topological space (that is to say, we do not consider the orbifold fundamental
group here). Moreover, the holomorphic volume form dz1 ∧ dz2 on A is Z2-
invariant and so A/Z2 has holomorphically trivial canonical bundle. To
produce a smooth simply-connected surface with trivial canonical bundle,
we now resolve the 16 singularities.

To give a local model for the resolution one can start with the model
for the blow-up of a point O(−1)→ C2. The involution z 7→ −z of C2 lifts
to O(−1) where it now fixes the whole exceptional curve. The singularity
of O(−1)/Z2 is resolved by squaring the normal bundle to the exceptional
curve. In other words, taking the “square-root” gives a map O(−2) →
O(−1)/Z2. Now composing with projection to C2/Z2 gives a resolution
O(−2) → C2/Z2 in which the singularity has been replaced by a curve of
self-intersection −2. Doing this locally at each of the 16 singular points of
A/Z2 we get a smooth resolution X → A/Z2. Moreover it is straightforward
to verify that, since we have changed the topology only in codimension 2,
the fundamental group is unaffected and so π1(X) = 1.

An important feature of the model resolution p : O(−2)→ C2/Z2 is that
the pull-back p∗(dz1∧dz2), defined a priori away from the exceptional locus,
actually extends to a global nowhere-vanishing holomorphic volume form on
O(−2). This is described by saying the resolution is crepant. It follows that,
when thought of as a form on A/Z2 (away from the singularities), dz1 ∧ dz2
pulls back to X and extends to a holomorphic trivialisation of the canonical
bundle. In other words, X is a simply-connected complex surface with trivial
canonical bundle.
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3.2 The Davis manifold

In order to implement a similar construction in our situation, we first need
a hyperbolic 4-manifold which can play the role of A. For this we use a
beautiful manifold found by Davis [4]. (See also the article of Ratcliffe–
Tschantz [10] where the homology of the Davis manifold is computed.)

The Davis manifold M is built using a regular polytope called the 120-
cell (or hecatonicosachoron). The 120-cell is a four-dimensional regular solid
with 120 three-dimensional faces—the “cells”—each of which is a solid do-
decahedron. Each edge is shared by 3 dodecahedra and each vertex by 4
dodecahedra. In total, the 120-cell has 600 vertices, 1200 edges and 720
pentagonal faces. Take a hyperbolic copy P ⊂ H4 of the 120-cell in which
the dihedral angles are 2π/5. For each pair of opposite dodecahedral faces of
P there is a unique reflection in a hyperplane which identifies them. Gluing
opposite faces via these reflections gives the Davis manifold, a hyperbolic
4-manifold M .

The central involution of H4 which fixes the centre of P preserves both
P and the identifications of opposite faces, hence it gives an isometric in-
volution σ of M . Our symplectic construction will begin with the resulting
orbifold M/σ, which we call the Davis orbifold.

To analyse the fixed points of σ it is helpful to use the so-called “inside-
out” isometry of M (defined in [10]). To describe this, note that P can
be divided up into 14400 hyperbolic Coxeter simplexes. The vertices of a
simplex are given by taking first the centre of P , then the centre of one of
its 120 3-faces F , then the centre of one of the 12 2-faces f of F , then the
centre of one of the 5 edges e of f and, finally, one of the two vertices of
e. Denote by v1, v2, v3, v4, v5 one such choice. The corresponding simplex
has a isometry that exchanges v1 (the centre of P ) with v5 (a vertex of e),
v2 (the centre of F ) with v4 (the centre of an edge of F ′) and fixes v3 (the
centre of f). This isometry of the simplex extends to define the inside-out
isometry of M , which commutes with σ.

Lemma 6. The fixed set of σ consists of 122 points. The quotient M/σ is
simply connected as a topological space.

Proof. In the interior of the 120-cell there is only one fixed point, the centre,
all other fixed points of σ lie on the image in M of the boundary of P . Let
F denote the image in M of a three-dimensional face of P ; σ preserves F
and induces on it the symmetry of the dodecahedron given by inversion
x 7→ −x with respect to its centre. So, once again, in the interior of F there
is only one fixed point, its centre. Considering all opposite pairs of three-
dimensional faces of M this gives 60 more fixed points of σ. All remaining
fixed points are contained in the image in M of the union of the 2-faces of P .

The symmetry σ takes 2-faces to 2-faces. We claim next that σ does not
fix an interior point of any pentagonal 2-face. Assume for a moment that it
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does fix such a point. Then it would give an involution of the pentagon which
would hence fix a vertex and so also the line joining the vertex to the centre
of the polygon. The Davis manifold has two distinguished points, the centre
and the image of all the vertices of the 120-cell. The assumption that σ fixes
an interior point of a pentagonal 2-face gives a σ-fixed tangent direction at
the vertex point in M . However, the inside-out isometry exchanges the
centre and vertex of M . Since σ acts as x 7→ −x at the centre it does so also
at the vertex and hence acts freely on the tangent space there. It follows
that σ does not fix an interior point of any 2-face.

The remaining fixed points are contained in the image in M of the union
of the edges of P . Under the inside-out involution of M , the middles of
all edges are exchanged with centres of all 3-faces whilst the centre of P
is exchanged with the image in M of the vertices of P . Since the inside-
out isometry commutes with σ, this give an additional 61 fixed points of σ
making 122 in total.

We now turn to the (topological, not orbifold) fundamental group of
M/σ. The map π1(M) → π1(M/σ) is surjective so we need to show its
image is trivial. Consider the 60 closed geodesics γi in M going through
the centre of P and joining the centres of opposite faces. The deck trans-
formations corresponding to these geodesics generate the whole of π1(M).
Indeed, these deck-transformations take the fundamental domain P to all
its 120 neighbours. Now the result follows from the fact that every loop
σ(γi) is contractible.

3.3 The model singularity and resolution

Locally, the singularities of M/σ are modelled on the quotient of H4 by
x 7→ −x. (Here x is the coordinate provided by the Poincaré ball model of
H4.) This lifts to action on Z → H4 where the fixed locus is an S2-fibre.

To understand the resulting singularity in the quotient of Z we will use
the Kähler description of Proposition 5. This says that we can identify Z
symplectically with O(−1)⊕O(−1). In this picture, the involution acts by
z 7→ −z in the vector-bundle fibres of O(−1)⊕O(−1)→ CP1. The quotient
O(−1)⊕O(−1)/Z2 is a Kähler Calabi–Yau orbifold with singular locus CP1

corresponding to the zero section. We next describe a crepant resolution of
this singularity.

Lemma 7. There is a crepant resolution

O(−2,−2)→ O(−1)⊕O(−1)/Z2

where O(−2,−2)→ CP1×CP1 is the tensor product of the two line bundles
given by pulling back O(−2)→ CP1 from either factor.

Proof. Blow up the zero section of O(−1)⊕O(−1) to obtain the total space
of O(−1,−1) → CP1 × CP1. The Z2-action lifts to this line bundle where
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it again has fixed locus the zero section and acts by z 7→ −z in the fibres.
For such an involution on any line bundle L, the square gives a resolution
L2 → L/Z2. Hence

O(−2,−2)→ O(−1,−1)/Z2 → O(−1)⊕O(−1)/Z2

gives the claimed resolution

We should emphasise here that this is resolution is holomorphic. The
total space of O(−2,−2) is a Kähler manifold with trivial canonical bundle
and, away from the exceptional divisor, the map in Lemma 7 is a biholomor-
phism when we consider O(−1)⊕O(−1)/Z2 with its holomorphic complex
structure.

However, when constructing symplectic six-manifolds from hyperbolic
four-manifolds, the relevant almost complex structure and volume form on
O(−1)⊕O(−1) (and its Z2-quotient) are not the holomorphic ones; rather
we use the SO(4, 1)-invariant almost complex structure and complex volume
form from §2.1 and Remark 4. Lemma 7 can only be used to provide crepant
resolutions of Calabi–Yau singularities modelled on the holomorphic geom-
etry of O(−1) ⊕ O(−1)/Z2 and not the SO(4, 1)-invariant almost complex
structure and complex volume form of §2.1.

So, in order to apply Lemma 7 to resolve the singularities in a hyperbolic
twistor space, we need to interpolate between the holomorphic structures
near the zero section in O(−1)⊕O(−1) to the SO(4, 1)-invariant structures
outside a small neighbourhood of the zero section. This interpolation is
provided by the following result.

Lemma 8. Let Zδ denote the part of Z → H4 lying over a geodesic ball
in H4 of radius δ. For any δ > 0, there is an SO(4)-invariant compatible
almost complex structure J on Z and an SO(4)-invariant nowhere-vanishing
section Ω of the J-canonical-bundle such that:

• Over Zδ, J and Ω agree with the standard holomorphic structures.

• Over Z \ Z2δ, J and Ω agree with the SO(4, 1)-invariant structures
from §2.1 and Remark 4.

Proof. As is standard, an SO(4)-invariant interpolation between the “inside”
and “outside” Hermitian metrics gives the existence of J .

To produce Ω we start with a description of the SO(4)-action away from
the zero-section Z0. The stabiliser of a point p ∈ Z\Z0 is a circle S1

p ⊂ SO(4)
and the orbit of p is 5-dimensional (in fact, isomorphic as an SO(4)-space to
the unit tangent bundle of S3). The lift of a geodesic ray out of the origin in
H4 meets each SO(4)-orbit in a unique point, giving a section for the action.
We interpolate between the holomorphic and hyperbolic complex volume
forms along the relevant portion of this lifted ray and then use the SO(4)-
action to extend the resulting 3-form to the whole of Z. In order for this to
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work it is sufficient that at every point p ∈ Z \ Z0 the action of S1
p on the

fibre of the J-canonical-bundle at p is trivial. But since the weight is integer
valued and continuous it is constant on Z\Z0 so we can compute it for some p
outside of Z2r where everything agrees with the hyperbolic picture. Here we
already have an SO(4)-invariant (hence S1

p -invariant) complex volume-form
so the weight is zero as required.

3.4 The twistor space of the Davis orbifold

With Lemmas 7 and 8 in hand, we can now take a crepant resolution of the
twistor space of the Davis orbifold M/σ. Let X → M denote the twistor
space of the Davis manifold The involution σ lifts to an involution of X
which we still denote σ. X/σ is a symplectic orbifold with singularities
along 122 CP1s, each modelled on O(−1)⊕O(−1)/Z2.

Let δ be a positive number small enough that the geodesic balls in M of
radius 2δ centred on the σ-fixed points are embedded and disjoint. Then, by
Lemma 8, on X we can find a new almost complex structure J and complex
volume form Ω such that outside the geodesic 2δ-balls they agree with the
hyperbolic structures coming from §2.1 and Remark 4, whilst inside the
balls of radius δ they agree with the holomorphic structures coming from
the holomorphic geometry of O(−1) ⊕ O(−1). It follows from the SO(4)-
invariance in Lemma 8 that J and Ω are σ-invariant.

In this way the quotient X/σ is a symplectic orbifold with an almost
complex structure and complex volume form which are modelled near the
singular curves on the holomorphic geometry of O(−1) ⊕ O(−1)/Z2. It
follows from Lemma 7 that there is a resolution X̂ → X/σ in which the
singular curves have been replaced by copies of CP1 × CP1 with normal
bundle O(−2,−2); moreover, X̂ carries an almost complex structure Ĵ and
complex volume form Ω̂ so that c1(X̂, Ĵ) = 0.

Finally we need to define the symplectic structure on X̂. Pulling back
the symplectic form via X̂ → X gives a symplectic form on the complement
of the exceptional divisors. To extend it we use a standard fact about
resolutions in Kähler geometry. Given any neighbourhood U of the zero
locus in O(−2,−2), there is a Kähler metric on O(−2,−2) for which the
projection to O(−1) ⊕ O(−1)/Z2 is an isometry on the complement of U .
(This amounts to the fact that the zero locus has negative normal bundle.)

So, in the model, the pull-back of the symplectic form extends over the
exceptional divisor in a way compatible with holomorphic complex structure.
Taking U sufficiently small and doing this near all 122 exceptional divisors
defines a symplectic form ω on X̂ which is compatible with Ĵ .
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3.5 Non-Kählerity

It remains to prove that there is no compatible Kähler structure on X̂; indeed
there is no Kähler structure whatsoever with c1 = 0. This will follow from
the fact that π1(X̂) and b3(X̂) both vanish. To prove simple-connectivity
we first recall a standard lemma.

Lemma 9. Let A and B be two finite dimensional CW complexes and let
f : A→ B be a surjective map with connected fibres. Suppose that B has an
open cover by sets Ui such that for any y ∈ Ui the inclusion homomorphism
π1(f−1(y))→ π1(f−1(Ui)) is an isomorphism. Then the following sequence
is right-exact:

π1(f−1(y))→ π1(A)→ π1(B)→ 0.

(This is a truncated version of the long exact sequence of homotopy
groups associated to a Serre fibration. The proof is identical.)

Lemma 10. X̂ is simply connected.

Proof. We first apply Lemma 9 to the map X/σ → M/σ. The fibres are
S2s and we see that π1(X/σ) = 1. Next we apply Lemma 9 to X̂ → X/σ.
This time the fibres are points or S2s and we deduce that π1(X̂) = 1.

To prove that b3(X̂) = 0 we invoke a lemma of McDuff on the cohomology
of manifolds obtained by symplectic blow-ups.

Lemma 11 (McDuff [9]). Let X be a symplectic manifold and C ⊂ X a
smooth symplectic submanifold of codimension 2k. Let X̃ denote the blow-
up of X along C. Then the real cohomology of X̃ fits into a short exact
sequence of graded vector spaces

0→ H∗(X)→ H∗(X̃)→ A∗ → 0

where the first arrow is pull-back via X̃ → X and where A∗ is free module
over H∗(C) with one generator in each dimension 2j, 1 ≤ j ≤ k.

Lemma 12. b3(X̂) = 0.

Proof. Recall that X → M is the twistor space of the Davis manifold. We
first blow up the 122 fibres which lie over the fixed points of σ to obtain the
new manifold X̃. It follows from Lemma 11 that pulling back cohomology
via X̃ → X induces an isomorphism H3(X̃) ∼= H3(X).

Next, notice that σ lifts to X̃ and that X̂ = X̃/σ. We now show that
σ acts as −1 on H3(X̃). To see this, consider the action of σ on the Davis
manifold M . It acts on H1(M) as −1 and hence also as −1 on H3(M). Now
X → M is a sphere-bundle so, by Leray–Hirsch, H∗(X) is a free module
over H∗(M) with a single generator in degree 2 corresponding to the first
Chern class of the vertical tangent bundle. This generator is preserved by
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σ, so σ acts as −1 on H3(X) and hence also as −1 on H3(X̃). From this
we deduce that H3(X̂) = 0. For if it contained a non-zero element, the
pull-back to X̃ would be a σ-invariant element of H3(X̃).

Lemma 13. A Kähler manifold with b1 = 0 and c1 = 0 has b2 ≥ 2.

Proof. For a Kähler manifold, the vanishing of b1 implies the Picard torus is
trivial. I.e., a holomorphic line bundle which is topologically trivial bundle is
necessarily holomorphically trivial. Now this combined with c1 = 0 implies
the canonical bundle is holomorphically trivial and so there is a holomorphic
volume form. The real and imaginary parts of this form have independent
cohomology classes and hence b3 ≥ 2.

Corollary 14. X̂ admits no Kähler structure for which c1 = 0.

4 Generalising the construction

The last section of [7] describes a variety of questions which arise out of
this construction. We restrict ourselves here to the following one: is it
possible to use the same approach—hyperbolic orbifolds and resolution of
singularities—to produce more examples of symplectic manifolds with van-
ishing first Chern class?

A collection of hyperbolic orbifolds is mentioned in [7] with relatively
simple singularities (although not as simple as the isolated singularities of
the Davis orbifold). In forthcoming work we will show how the corresponding
symplectic orbifolds can be resolved [6]. This produces a collection of simply-
connected symplectic manifolds with c1 = 0 and with arbitrarily large Betti
numbers. It is as yet unknown whether a similar phenomenon can occur for
Kähler Calabi–Yau manifolds.

If one was optimistic, however, one might hope that the potential for this
construction is far greater. We need two things: the hyperbolic orbifolds
and a way to resolve the resulting symplectic singularities. On the first
topic, we mention a question due to Gromov: Is every compact n-manifold
homeomorphic to the quotient of Hn by a discrete group of isometries? (Of
course, the group is allowed to have torsion.) In dimensions 2 and 3 this is
already known to be true. In dimension 4 this problem is seemingly wide
open.

On the second topic—crepant resolutions—we remark that for algebraic
threefolds, crepant resolutions are always known to exist by a famous result
of Bridgeland, King and Reid [2]. Even independently of the intended ap-
plication described here, it would be interesting to know what holds in the
symplectic setting.

If one were ambitious, one might hope to use this sort of construction
to approach the question of what groups might appear as the fundamental
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group of a symplectic 6-manifold with c1 = 0. Can any finitely presented
group arise this way?
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