
Chapter 2

Holomorphic line bundles

In the absence of non-constant holomorphic functions X ! C on a compact complex
manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e.,
rank one holomorphic vector bundles).

In this section we explain how Hermitian holomorphic line bundles carry a natural
connection and hence one can talk of the curvature of such a bundle. From here we
define the first Chern class, the main topological invariant of a line bundle. We then
turn to the question of prescribing the curvature of a holomorphic line bundle and
explain how this can always be done on a Kähler manifold. We close with a description
of the correspondence between line bundles (at least those which admit meromorphic
sections) and divisors (i.e., finite linear combinations of analytic hypersurfaces).

2.1 First Chern class via Chern–Weil

We begin with some general facts about holomorphic vector bundles. Recall that a
complex vector bundle E ! X over a complex manifold is holomorphic if there are
local trivialisations E|U

a

⇠= Ck ⇥ U
a

for which the transition functions f

ab

: U
a

\ U
b

!
GL(k, C) are holomorphic. In such a situation we can define a ∂̄-operator on sections

∂̄ : C•(E) ! W0,1(E)

where W0,1(E) denotes smooth sections of L0,1 ⌦ E. To define ∂̄, first look in a local
trivialisation over U

a

. Here sections are given by functions U
a

! Ck and we know
how to take ∂̄ of such a thing. Now when we change trivialisations we do so by a
holomorphic map and so ∂̄ is unaffected, meaning the local definitions patch together
to give an operator defined on global sections as claimed.

We now compare ∂̄-operators and connections.
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Definition 2.1. Let X be a complex manifold and E ! X a holomorphic vector bun-
dle. A connection r in E is said to be compatible with the holomorphic structure in E if
p

0,1(rs) = ∂̄s for all sections s of E.

Proposition 2.2. Let E be a Hermitian holomorphic vector bundle. Then there is a unique
connection in E compatible with both the Hermitian and holomorphic structures.

Definition 2.3. The distinguished connection in Proposition 2.2 is called the Chern
connection.

Proof of Proposition 2.2 for line bundles. We prove this for a line bundle L ! X. (The
proof for vector bundles of higher rank is left as an exercise.) In a local holomorphic
trivialisation, connections compatible with the holomorphic structure have the form
rA = d + A where A is a (1, 0)-form. Meanwhile, the Hermitian structure h is given
in the trivialisation by a smooth real-valued positive function, which we continue to
denote h. The condition rAh = 0 amounts to Ah + hĀ = dh which, when combined
with the fact that A is of type (1, 0), gives A = ∂ log h. It follows that there is a unique
choice of A such that rA is compatible with both structures. We can do this in each
local trivialisation of L; by uniqueness the a priori locally defined Chern connections
all agree over intersections and so give a globally defined connection.

Whilst different metrics will certainly lead to different Chern connections there is a
topological restriction on the possible curvatures.

Lemma 2.4. Given a Hermitian metric h in a holomorphic line bundle L ! X, the curvature
Fh of the Chern connection is closed and, moreover, i

2p

[Fh] 2 H2(M, R) is independent of the
choice of h.

Proof. The curvature of L in the local trivialisation is given by Fh = dA = ∂̄∂ log h and
so Fh is certainly closed. Note moreover that iFh = i∂̄∂ log h is a real (1, 1)-form and so
i[Fh] 2 H2(M, R) as claimed.

To prove that it is independent of the metric, write h0 = e f h for a second Hermitian
metric in L, where f is any smooth function X ! R. The corresponding curvatures
are related by Fh0 = Fh + ∂̄∂ f . Since ∂̄∂ f = d∂ f it follows that the cohomology class
[Fh] is independent of the choice of metric h and depends only on the holomorphic
line bundle L.

Definition 2.5. We write c1(L) = i
2p

[Fh] 2 H2(X, R) where h is any Hermitian metric
in L. This is called the first Chern class of L.

This is actually a simple example of a much more general phenomenon in algebraic
topology. The approach to the first Chern class we have taken here is direct but con-
tains only what we will need in the rest of these notes. What is not apparent from our
brief discussion is that :
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• The class c1(L) 2 H2(X, R) is actually the image of a class in H2(X, Z). This
lift is what is more normally known as the first Chern class of L. (Notice that
the de Rham class will vanish if the integral class is torsion, so the integral class
carries strictly more information.)

• In fact, one can use the same definition for any unitary connection in L with
respect to any Hermitian metric, not just one compatible with the holomorphic
structure.

• It follows that the first Chern class depends only on the topological isomorphism
class of L ! X (and not its holomorphic structure).

• These classes can be defined without using connections at all, for line bundles
over any sufficiently nice topological (e.g., topological manifolds).

• One can define higher Chern classes for vector bundles of higher rank in a similar
fashion by constructing differential forms out of their curvature tensors. Again,
this gives an image in de Rham cohomology of the genuine topological invariants
which live in integral cohomology. And again, this can all be done without
connections on topological manifolds.

We will not pursue these matters here.

Of course, for this discussion to be of interest, one must have some holomorphic
line bundles in the first place. There is always one holomorphic line bundle you are
guaranteed to have to hand:

Definition 2.6. Let X be a complex manifold. The holomorphic line bundle K =
Ln(T⇤X) is called the canonical line bundle and its dual K⇤ the anti-canonical line bundle.
The first Chern class of X is defined by c1(X) = c1(K⇤) = �c1(K).

Exercises 2.7.

1. Prove Proposition 2.2 by following the same proof as was given above for line
bundles.

2. Let L ! Cn be the trivial bundle with Hermitian metric h = e�|z|2 . Compute the
curvature of the corresponding Chern connection.

3. Let L ! C be the trivial bundle with Hermitian metric h = 1 + |z|2. Compute
the curvature F of the corresponding Chern connection.

Calculate
R

C
F.

4. Given line bundles L1, L2, prove that c1(L1 ⌦ L2) = c1(L1) + c1(L2).

5. Given a vector bundle E, we can define c1(E) = c1(det E) where det E is the top
exterior power of E.
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(a) Prove for vector bundles E1, E2 that c1(E1 � E2) = c1(E1) + c1(E2).

(b) Prove that if L is a line bundle and E a vector bundle of rank r then c1(L ⌦
E) = rc1(L) + c1(E).

2.2 Line bundles over projective space

We next consider holomorphic line bundles over complex projective space. There is
a tautological bundle over CPn, denoted O(�1) (for reasons which will soon become
clear). A point x 2 CPn corresponds to a line Lx < Cn+1; the fibre of O(�1) over x is
precisely Lx.

The dual of O(�1) is denoted O(1) and is called the hyperplane bundle. More generally,
for k 2 Z, O(k) denotes the kth-power of the hyperplane bundle (if k is negative then
we interpret this as the �kth-power of O(�1)).

We can write down holomorphic sections of O(1) in a simple fashion. Let a 2 (Cn+1)⇤.
Note that the fibre Lx of O(�1) at x is a linear subspace of Cn+1 and so, by restriction,
a defines a linear map Lx ! C. In other words, a determines a section s

a

of O(1).

We can now explain the reason for the name “hyperplane bundle”. The linear map
a : Cn+1 ! C has kernel a hyperplane in Cn+1 which descends to a hyperplane
CPn�1 ⇢ CPn. Tracing through the definition we see that this is exactly the zero
locus of s

a

.

The above construction shows that the space of holomorphic sections of O(1) has
dimension at least n + 1. In fact, the s

a

account for all the holomorphic sections of
O(1) as we will prove later.

We next turn to sections of O(k) for k > 1. To write some down, we can take tensor
products of sections of O(1), giving sections of the form sp1

a1 ⌦ spj
aj where p1 + · · ·+ pj =

k. Another way to interpret such sections is to consider a homogeneous degree k
polynomial giving a map Cn+1 ! C. Restricting to Lx we get a degree k map Lx ! C

or, equivalently a linear map Lk
x ! C and so a section of O(k). Again we will prove

later that the homogeneous degree k polynomials account for all holomorphic sections
of O(k).

Exercises 2.8.

1. Check that the bundle O(�1) defined above is genuinely a holomorphic line
bundle.

Check that s
a

defined above is genuinely a holomorphic section of O(1).

2. Fix a Hermitian metric on Cn+1. Since the fibre Lx of O(�1) at x is a subspace
of Cn+1 the Hermitian structure induces a Hermitian metric in the line bundle
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O(�1). Compute the curvature of the corresponding Chern connection. How
does it relate to the Fubini–Study metric?

2.3 Prescribing the curvature of a line bundle

We have seen that when L ! X is a holomorphic Hermitian line bundle, its curvature
gives a real (1, 1)-form i

2p

F representing c1(L). A natural question is: given a (1, 1)-
form F 2 �2pic1(L) is there a Hermitian metric h in L with Fh = F?

Fix a reference metric h0. Then h = e f h0 is the metric we seek if and only if f solves

∂̄∂ f = F � Fh0 .

This question is the basic prototype of more difficult questions which we will en-
counter later.

On a Kähler manifold, it turns out one can always solve the above question, thanks to
the following Lemma.

Lemma 2.9 (The ∂̄∂-lemma). Let (X, J, w) be a compact Kähler manifold and let a1, a2 be
cohomologous real (1, 1)-forms. Then there exists f : X ! R such that a1 = a2 + i∂̄∂f. Such
a function f is unique up to the addition of a constant.

The proof is in the exercises.

Corollary 2.10. Given a holomorphic line bundle L ! X over a Kähler manifold and a real
(1, 1)-form F 2 �2pic1(L) there is a unique Hermitian metric h, up to constant scale, with
Fh = F.

The ∂̄∂-lemma also gives an extremely convenient description of all Kähler forms in a
fixed cohomology class.

Corollary 2.11. If w1, w2 are two Kähler metrics in the same cohomology class then there
exists a smooth function f, unique up to addition of a constant, such that w1 = w2 + i∂̄∂f.

Definition 2.12. Given two cohomologous Kähler metrics w1, w2 a function f satisfy-
ing w1 = w2 + i∂̄∂f is called the Kähler potential of w1 relative to w2.

If one has locally, w = i∂̄∂f, then f is called a local Kähler potential for w.

This simple fact is one of the most important reasons why Kähler metrics are more tractable
than general Riemannian metrics: the metric is determined by a single scalar function, rather
than a matrix valued function.

Exercises 2.13. Let X be a compact Kähler manifold. Prove the ∂̄∂-lemma as follows.
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1. Let q be a (0, 1)-form.

(a) Prove that there is a function u : X ! C such that ∂̄

⇤(q � ∂̄u) = 0.

(b) Prove, moreover, that if ∂̄q = 0 then with this same choice of u we have
∂(q � ∂̄u) = 0.

2. Let a = db be a real (1, 1)-form.

(a) By applying the results of the previous step to q = b

0,1, prove that there is
a (complex valued) function u for which ∂b = �∂̄∂u.

(b) Deduce that a = i∂̄∂f for a real-valued function f.

(c) Prove moreover that f is unique up to the addition of a constant.

2.4 Line bundles and divisors

Let L ! X be a holomorphic line bundle and s a holomorphic section. At least when s
vanishes transversely, its zero locus is a smooth complex hypersurface, i.e., a complex
submanifold of codimension 1. The language of divisors enables one to associate a lin-
ear combination of hypersurfaces, called a divisor, to holomorphic (or meromorphic)
sections which don’t necessarily vanish transversely. Moreover, it turns out that one
can recover the line bundle L from the divisor of a meromorphic section. In this way
we will set up a correspondence between divisors (modulo linear equivalence) and
line bundles which admit meromorphic sections.

We begin with the definition of a divisor.

Definition 2.14. Let X be a complex manifold.

1. An analytic hypersurface V ⇢ X, or hypersurface for short, is a subset which can
locally be written as the zero locus of a single holomorphic function. I.e., there
is an open cover {U

a

} of X and holomorphic functions f
a

: U
a

! C such that
V \ U

a

= f�1
a

(0).

2. A hypersurface is called irreducible if it cannot be written as the union of two non-
empty hypersurfaces and, moreover, the local defining functions f

a

are chosen
to vanish to order 1. Otherwise it is called reducible.

3. A divisor is a finite formal sum D = Â mjVj of irreducible hypersurfaces Vj with
integer coefficients mj.

4. The set Div(X) of divisors is a group under addition in the obvious way.

5. A divisor Â mjVj is called effective if mj � 0 for all j. (We allow mj = 0 to include
the zero divisor.) We write D � 0 to indicate that D is effective.
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Next we describe how to associate a divisor to a meromorphic section of a holomor-
phic line bundle L ! X. (A meromorphic section is one which is given in a local
trivialisation by a meromorphic function, equivalently by a locally defined holomor-
phic function with values in CP1.) To do this we need to describe the order of a zero
and of a pole of such a section.

Definition 2.15. Let s be a meromorphic section of L ! X.

1. Suppose that s(x) = 0 and choose a local trivialisation of L over a coordinate
chart U of x, in which s : U ! C is regarded as a meromorphic function on a
subset of Cn. The order of vanishing of s at x is the lowest m 2 N such that s has a
non-zero partial derivative of order m at x.

2. Suppose that s has a pole at x. Again choose a local trivialisation of L in a chart
near x in which s is regarded as a meromorphic function. We say s has a pole of
order m at x if the meromorphic function 1/s has a zero of order m at x.

One should check that this definition does not depend on the choice of local triviali-
sation and chart which are used to define the partial derivatives.

Definition 2.16. Let s be a meromorphic section of a holomorphic line bundle.

1. The zero divisor of s is the formal sum

Z(s) = Â mjVj

where the Vj are the irreducible components of s�1(0) and mj 2 N is the order
of vanishing of s along Vj.

2. The polar divisor of s is the formal sum

P(s) = Â njWj

where the Wj are the irreducible components of s�1(•) and nj 2 N is the order
of the pole of s along Wj.

3. The divisor of s is the formal sum

div(s) = Z(s)� P(s)

Note that s is holomorphic if and only if div(s) is effective.

Example 2.17. Consider the polynomial s
e

(x, y, z) = xy � ez2 As explained above this
corresponds to a section of O(2) ! CP2. When e 6= 0, the zero locus of s

e

is a conic
C

e

, the image of a non-linear embedding of CP1 inside CP2. When e = 0, the zero
locus is a pair of linearly embedded CP1s given by {x = 0} and {y = 0}. When
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e ! •, the conic C
e

collapses to two copies of the same linearly embedded CP1 given
by {z = 0}. (This can be seen by looking at the rescaled polynomial e

�1xy � z2.)

div(s
e

) =

8
<

:

C
e

for e 6= 0
P(x = 0) + P(y = 0) for e = 0
2P(z = 0) for e = •

We next explain how to associate a holomorphic line bundle to a divisor. We begin
with an irreducible hypersurface V ⇢ X. Write {U

a

} for a cover of X with functions
f
a

: U
a

! C which vanish to order 1 along V \U
a

. On an intersection U
ab

the quotient
f
ab

= f
a

/ f
b

is holomorphic and non-vanishing, since the zeros of the numerator and
denominator cancel exactly. Moreover, f

ab

f
bg

f
ga

= 1. This means we can use the f
ab

as transition functions for a line bundle which we denote LV . Finally, notice that LV
comes with a holomorphic section: since f

a

= f
ab

f
b

the f
a

s are the local representatives
of a holomorphic section which we denote sV .

Definition 2.18. Given a divisor D = m1V1 + · · ·+ mkVk, the line bundle of D is

LD = Lm1
V1

⌦ · · ·⌦ Lmk
Vk

where if m < 0, then Lm means (L⇤)m.

LD also comes with a meromorphic section. To see this, return to the case of an irre-
ducible hypersurface as discussed above. The transition functions for L⇤

V are f�1
ab

. This
means that the functions f�1

a

define a meromorphic section s�1
V of L⇤

V . We can now
write

sD = sm1
V1

⌦ · · ·⌦ smk
Vk

for the distinguished meromorphic section of LD.

The multiplicative notation L�1 = L⇤ is no accident. Line bundles up to isomorphism
form an abelian group, with the trivial bundle as identity and the dual as the inverse.

Definition 2.19. Denote by Pic(X) the set of isomorphism classes of holomorphic line
bundles. Tensor product makes Pic(X) into an abelian group, called the Picard group
of X.

In proving that Pic(X) is a group, the main thing to check is that L⌦ L⇤ is trivial. To see
this, identify L ⌦ L⇤ ⇠= End(L); the endomorphism bundle has a nowhere vanishing
section given by the identity L ! L; since End(E) is also of rank 1 this means it is
trivial.

Proposition 2.20.

1. The map D 7! LD gives a homomorphism Div(X) ! Pic(X).
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2. The divisor D can be recovered from (LD, sD) via D = div(sD).

3. Given a line bundle L with a meromorphic section s there is an isomorphism Ldiv(s)
⇠= L.

4. The kernel of the homomorphism Div(X) ! Pic(X) is those divisors of the form div( f )
where f is a meromorphic function on X.

5. The image of Div(X) ! Pic(X) is those line bundles admitting a meromorphic section.

Proof. The first two points follow immediately from the definitions. To prove the third
point, that Ldiv(s)

⇠= L note that Ldiv(s) has a meromorphic section t with the same
divisor as s. In other words, s�1 ⌦ t is a holomorphic nowhere vanishing section of
L⇤ ⌦ LD giving the required isomorphism.

To prove the fourth point, suppose that LD is isomorphic to the trivial bundle. Write
“1” for the nowhere vanishing holomorphic section of LD arising from a trivialisation
LD ⇠= O. The meromorphic section sD is of the form f · 1 for some meromorphic
function f and we have D = div(sD) = div( f ). Conversely, if D = div( f ) then,
regarding f as a section of the trivial bundle, we see from the third part that LD ⇠= O.

Finally, the fifth point follows from the above.

Definition 2.21. Two divisors D, D0 are called linearly equivalent if LD ⇠= LD0 which is
the same as saying D � D0 = div( f ) for some meromorphic function f .

We will see later that when (X, w) is Kähler and [w] is actually the first Chern class
c1(L) of some line bundle, then in fact all holomorphic line bundles over X admit
meromorphic sections and so the map Div(X) ! Pic(X) is actually surjective, giving
an isomorphism Pic(X) ⇠= Div(X)/ ⇠ where ⇠ denotes linear equivalence.

Lemma 2.22. If two divisors are linearly equivalent then they are homologous. (When talking
of the homology class of D = Â mjVj, we mean [D] = Â mj[Vj] 2 H2n�2(X, Z).)

Proof. Let sD and sD0 be meromorphic sections of a line bundle L corresponding to
two linearly equivalent divisors D, D0. The section st = (1 � t)sD + tsD0 gives a path
of divisors giving a homology from D to D0.

In fact we can do much better than this Lemma: the homology class of D is Poincaré
dual to c1(LD). This is a consequence of the Poincaré–Lelong formula, which we do
not prove.

Theorem 2.23 (Poincaré–Lelong). Let D = Â mjVj 2 Div(X). Then c1(LD) 2 H2(X, Z)
is Poincaré dual to the homology class [D]

When V ⇢ X is a smooth irreducible hypersurface there is a succinct geometry inter-
pretation of LV . Recall that the normal bundle of V is the line bundle N ! V given
by taking the quotient of TX|V by TV.
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Proposition 2.24. Given a smooth irreducible hypersurface V, there is an isomorphism N ⇠=
LV |V between the normal bundle of V and the restriction of LV to V.

Proof. Write N⇤ for the conormal bundle. The dual of the surjection TX|V ! N gives
an injection N⇤ ! T⇤X|V , with image the sub-bundle of 1-forms which vanish on
vectors tangent to V.

Now let {U
a

, f
a

} be an open cover of X with locally defining functions f
a

for V. The
transition functions of LV are f

ab

= f
a

/ f
b

. At points of V \ U
a

\ U
b

, the locally
defined holomorphic 1-forms d f

a

satisfy d f
a

= f
ab

d f
b

. This means that the d f
a

fit
together to give a global nowhere vanishing section of T⇤X|V ⌦ L. Moreover, since
V is irreducible, d f

a

is non-zero on V. Finally, since f
a

vanishes on V, d f
a

vanishes
on vectors tangent to V. This means that they combine to give a nowhere vanishing
section of N ⇤ ⌦LV |V or, in other words, an isomorphism N ! LV |V .

The following is a useful corollary of this result, which is often called the adjunction
formula.

Corollary 2.25. [Adjunction formula] Let V ⇢ X be a smooth irreducible hypersurface. Then
the canonical bundles of V and X are related by

KV ⇠= KX|V ⌦ L�1
V |V

The proof is an exercise.

2.5 Linear systems and maps to projective space

Consider two independent sections s, s0 of a holomorphic line bundle L ! X. Given
[p, q] 2 CP1 we define the divisor D[p, q] = div(ps+ qs0). (Note that whilst the section
ps + qs0 depends on the pair (p, q) of coordinates, the divisor depends only on the
image in CP1.) The divisors D[p, q] are all linearly equivalent, since they come from
sections of the same bundle L.

We can use s, s0 to define a map to CP1 which is defined on almost all of CP2. To do
this, suppose that s and s0 do not both vanish at [x, y, z]. Then we can find a unique
point [p, q] 2 CP1 such that (ps+ qs0)(x, y, z) = 0. In other words, exactly one member
of the family of divisors passes through [x, y, z]. If we let B = s�1(0) \ s0�1(0), then
f [x, y, z] = [p, q] defines a map f : X \ B ! CP1 whose fibres are the divisors in our
family.

We can generalise this construction to larger families of holomorphic sections. We
begin with a holomorphic line bundle L ! X and a linear subspace V ⇢ H0(X, L) of
holomorphic sections. Such a V, called a linear system, determines a map to projective
space in the following way.
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Let s0, . . . , sd be a basis of V and define the map f : X ! CPd by

f (x) = [s0(x) : · · · : sd(x)]

There are three things to mention here.

Firstly, the sj(x) are not, as the notation here suggests, genuine complex numbers,
rather they are all elements in the same complex line Lx, the fibre of L over x 2 X. In
order to make sense of the above expression, one must first choose an isomorphism
Lx ⇠= C, under which the sj(x) 2 Lx are now identified with complex numbers s0j(x) 2
C say. The point is that if one chooses a different isomorphism between Lx and C, the
sj(x) become identified with different elements s00j (x) 2 C but since the two different
identifications of Lx with C differ simply by multiplication by some a 2 C \ 0, these
new elements are related to the old ones by s00j (x) = as0j(x) for all j and hence the
corresponding point in projective space is unchanged. This is what is meant by the
above map.

Secondly, it is possible that f is not defined at all points of X, namely if all sections
in V vanish at some x, then f will not be defined there. This leads to the following
definition.

Definition 2.26. Given a holomorphic line bundle L ! X and a subspace V ⇢
H0(X, L), the set B of common zeros of sections of V is called the base locus of V.
Given a basis s0, . . . , sd of V, there is a well defined map f : X \ B ! CPd, called the
map corresponding to the linear system V. When B = ?, one says that V is base point
free.

Thirdly, we can interpret this in terms of the family of divisors defined by the sections
s 2 V. Given a hyperplane H ⇢ CPd, then f�1(H) [ B is a divisor in X of the form
s�1(0) \ B for a unique s 2 V.

Example 2.27. Recall that a holomorphic section of O(k) is a homogeneous polynomial
of degree k in d + 1 variables. It can be checked that space of such polynomials has
dimension Nk,d = (k+d)!

k!d! . Since there is no point of Cd+1 at which all such polynomials
vanish, the base locus of the complete linear system is empty and we get a map CPd !
CPNk,d�1, called the Veronese embedding. It is not difficult to check that this is indeed an
embedding.

There is a more invariant way of defining the map f which does not involve the
choice of a basis. Evaluation at a point x 2 X defines a linear map evx : V ! Lx.
Picking an identification Lx ⇠= C we identify evx with an element in V⇤. Changing the
identification Lx ⇠= C scales this element of V⇤ by a non-zero constant and so, at least
assuming evx is not identically zero, we obtain a well-defined element of P(V⇤).

Definition 2.28. Given a holomorphic line bundle L ! X and a subspace V ⇢
H0(X, L) there is a canonically defined map, f : X \ B ! P(V⇤), called the map corre-
sponding to the linear system V.
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At least away from the base locus, we can recover L from the map f .

Lemma 2.29. Given a line bundle L ! X, a linear system V with base locus B and map
f : X \ B ! P(V⇤), there is a natural identification between L|X\B and the pullback f ⇤O(1)
of the hyperplane bundle.

The proof is an exercise.

Exercises 2.30.

1. Check that Definition 2.15 does not depend on the choice of local trivialisation
used to define the partial derivatives of s.

2. (a) Let D 2 Div(X). Prove that there is an isomorphism between the space of
holomorphic sections of LD and the space of meromorphic functions f for
which D + div( f ) � 0.

(b) Prove that if D > 0 then L⇤
D has no holomorphic sections.

3. Let D 2 Div(CPn) be an effective divisor which is linearly equivalent to a hy-
perplane CPn�1 ⇢ CPn.

(a) Prove that if x, y 2 D (i.e., x, y are points lying in the irreducible hypersur-
faces which make up D) then the linear CP1 joining x and y is contained
in D. Hint: consider the intersection number [CP1] · [D].

(b) Prove that in fact D is itself a hyperplane.
(c) Prove that the only holomorphic sections of O(1) ! CPn are those coming

from the linear functions Cn+1 ! C.

4. Prove that the canonical bundle of CPn is isomorphic to O(�n � 1).

Hint: use the n + 1 affine charts {zj 6= 0} to write down a meromorphic volume form
on CPn with a simple pole along each coordinate hyperplane {zj = 0}.

5. Prove Corollary 2.25.

6. Let s be a holomorphic section of O(d) ! CP2 for which s�1(0) is a smooth
irreducible hypersurface S.

(a) Prove that [S] · [S] = d2.
(b) Prove that the genus of S is given by

g(S) =
(d � 1)(d � 2)

2

7. Let s be a holomorphic section of O(d) ! CPn for which s�1(0) is a smooth
irreducible hypersurface X. Prove that the canonical bundle of X is trivial when
d = n + 1.
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