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1 Introduction

These notes were written for the summer school on Kähler geometry and

quantisation, held at the Universität zu Köln, in July 2012. They provide

background and some details for the lectures I gave there. The aim was to

introduce students to the study of canonical metrics on Kähler manifolds

with the ultimate goal of explaining the link via quantisation between

balanced embeddings and constant scalar curvature metrics, uncovered

by Donaldson [15, 17].

Along the way I hope to have given an overview of the study of canonical

Kähler metrics and Kähler manifolds themselves. This is a vast subject,

with a long and distinguished history, far more than can be covered in

a few lectures and these short notes. I have tried to point out some of

the highlights, leaving the reader to discover the rest in the literature. In

keeping with the informal spirit of the lectures, I have chosen to focus on

the overall picture of the subject since this is often left unsaid in the actual

research articles, where it is frequently considered as something already

familiar to the experts. On the other hand I have given a bare minimum of

technical detail, for which the reader should refer to the original articles

themselves.

These notes are meant to be complimentary to the various survey articles

already written on the subject, most notably the notes of Thomas [43],

Phong–Sturm [37] and Tian [47]. In particular, Thomas’s notes explain in

detail an important motivating principle—the moment map and Kähler

quotients—which we do not mention at all here, simply for lack of time.

The reader in search of a more complete understanding of the link between

stability and constant scalar curvature metrics is encouraged to look there.

Nothing which appears in these notes is original. The general description

of canonical metrics given here is based on many conversations with many

people, the most important of which are the two who introduced me to

the whole topic, Simon Donaldson and Richard Thomas. I would also like

to thank Julius Ross and Gabor Székelyhidi for helping me as I learnt my

way in to the subject.

Finally I would like to thank William Kirwin and George Marinescu for

organising the summer school, part of which these notes are based on, The

event was an excellent experience for all involved.
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2 Brief review of Kähler basics

The basic references for this section are the books of Griffiths and Harris

[21], Huybrechts [24] and Wells [26]. For a thorough introduction to Chern

and other characteristic classes from the topological point of view, see the

book of Milnor and Stasheff [34].

2.1 Chern connections and Chern classes

Definition 2.1. Let X be a complex manifold and E → X a holomorphic

vector bundle. A connection ∇ in E is said to be compatible with the

holomorphic structure in E if π0,1(∇s) = ∂̄s for all sections s of E.

Proposition 2.2. Let E be a Hermitian holomorphic vector bundle. Then there

is a unique connection in E compatible with both the Hermitian and holomorphic

structures.

Definition 2.3. The distinguished connection in the previous result is called

the Chern connection.

We prove this for a line bundle L → X. (The proof for vector bundles

of higher rank is left as an exercise.) In a local holomorphic triviali-

sation, connections compatible with the holomorphic structure have the

form ∇A = d + A where A is a (1, 0)-form. Meanwhile, the Hermitian

structure h is given in the trivialisation by a smooth real-valued positive

function, which we continue to denote h. The condition ∇Ah = 0 amounts

to Ah + hĀ = dh which, when combined with the fact that A is of type

(1, 0), gives A = ∂ log h. It follows that there is a unique choice of A

such that ∇A is compatible with both structures. We can do this in each

local trivialisation of L; by uniqueness the a priori locally defined Chern

connections all agree over intersections and so give a globally defined con-

nection.

Notice that the curvature of L in the local trivialisation is given by dA =

∂̄∂ log h. Write h′ = e f h for a second Hermitian metric in L, where f is

any smooth function X → R. The corresponding curvatures are related by

Fh′ = Fh + ∂̄∂ f . It follows that the cohomology class [Fh] is independent of

the choice of metric h and depends only on the holomorphic line bundle

L.

Definition 2.4. We write c1(L) = i
2π [Fh] ∈ H2(X, R) where h is any Her-

mitian metric in L. This is called the first Chern class of L.

What is not apparent from our brief discussion is that
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• The class c1(L) ∈ H2(X, R) is actually the image of a class in H2(X, Z).

This lift is what is more normally known as the first Chern class of L.

(Notice that the de Rham class will vanish if the integral class is tor-

sion, so the integral class carries strictly more information.)

• In fact, one can use the same definition for any unitary connection

in L with respect to any Hermitian metric, not just one compatible

with the holomorphic structure.

• It follows that the first Chern class depends only on the topological

isomorphism class of L → X (and not its holomorphic structure).

These classes can be defined for line bundles over any sufficiently

nice topological space (e.g., CW complexes)

• We also remark that one can define higher Chern classes for holo-

morphic vector bundles of higher rank vector bundles in a similar

fashion by constructing differential forms out of their curvature ten-

sors. Again, this gives an image in de Rham cohomology of the

genuine topological invariants which live in integral cohomology.

We will not pursue these matters here.

We have seen that when L → X is a holomorphic Hermitian line bundle,

its curvature gives a real (1, 1)-form i
2π F representing c1(L).

Question 2.5. Given a (1, 1)-form Φ ∈ −2πic1(L) is there a Hermitian

metric h in L with Fh = Φ?

Fix a reference metric h0. Then h = e f h0 is the metric we seek if and only

if f solves

∂̄∂ f = Φ − Fh0
.

This question is the basic prototype of more difficult questions which we

will encounter later.

Of course, for this discussion to be of interest, one must have some holo-

morphic line bundles in the first place. There is always one holomorphic

line bundle you are guaranteed to have to hand:

Definition 2.6. Let X be a complex manifold. The holomorphic line bun-

dle K = Λn(T∗X) is called the canonical line bundle and its dual K∗ the

anti-canonical line bundle. The first Chern class of X is defined by c1(X) =

c1(K
∗) = −c1(K).

Exercises 2.1.
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1. Prove Proposition 2.2 by following the same proof as was given

above for line bundles.

2. Let L → Cn be the trivial bundle with Hermitian metric h = e−|z|2 .

Compute the curvature of the corresponding Chern connection.

3. Let L → C be the trivial bundle with Hermitian metric h = 1 + |z|2.

Compute the curvature F of the corresponding Chern connection.

Calculate
∫

C
F.

4. Given line bundles L1, L2, prove that c1(L1 ⊗ L2) = c1(L1) + c1(L2).

5. Given a vector bundle E, we can define c1(E) = c1(det E) where

det E is the top exterior power of E.

(a) Prove for vector bundles E1, E2 that c1(E1 ⊕ E2) = c1(E1) +

c1(E2).

(b) Prove that if L is a line bundle and E a vector bundle of rank r

then c1(L ⊗ E) = rc1(L) + c1(E).

2.2 Definitions and examples of Kähler manifolds

Let X be a complex manifold and write J : TX → TX for the endomor-

phism of the tangent bundle given by multiplication by i.

Definition 2.7. A Riemannian metric g on X is called Hermitian if g(Ju, Jv) =

g(u, v) for all u, v ∈ TX.

Note that this is equivalent to saying that the bilinear form ω(u, v) =
g(Ju, v) is skew and of type (1, 1). The fact that g is positive definite

implies that ω is positive on all complex lines.

Definition 2.8. A real (1, 1)-form is called positive if it is positive on all

complex lines, i.e., ω(u, Ju) > 0 for all u 6= 0.

Notice that g can be recovered from ω and J via g(u, v) = ω(u, Jv). This

means that specifying a Hermitian metric g on X is the same thing as

specifying a positive (1, 1)-form ω.

Definition 2.9. Given a Hermitian metric g, we call ω the associated (1, 1)-

form of g.

A Kähler manifold is a complex manifold with a Hermitian metric which

also satisfies a differential compatibility condition.
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Proposition 2.10. Let (X, J, g) be a Hermitian manifold. The following are

equivalent:

1. The complex structure J is parallel with respect to the Levi-Civita connec-

tion, i.e., ∇J = 0.

2. The Chern connection and Levi-Civita connection on TX are the same.

3. The associated (1, 1)-form ω is parallel: ∇ω = 0.

4. The associated (1, 1)-form ω is closed: dω = 0.

5. Locally, one can write ω = i∂̄∂φ for a real valued function φ, called a local

Kähler potential.

6. There exist holomorphic coordinates z1, . . . , zn in which the metric is Eu-

clidean to second order: g = ∑ dzi ⊗ dz̄i + O(|z|2).

Definition 2.11. When one, and hence all, of the above conditions are met

we call (X, J, g) a Kähler manifold.

Examples 2.12.

1. Let (X, J) be a Riemann surface and let g be a Hermitian metric with

associated (1, 1)-form ω. Since there are no 3-forms on a surface,

dω = 0 and (X, J, g) is Kähler.

2. Let (X, g) be an oriented surface (real dim 2) with a Riemannian met-

ric. Define J : TX → TX as a positive rotation by π/2. Isothermal

coordinates for X are coordinates in which the metric has the form

g = f (x, y)(dx2 + dy2). It is an important fact that such coordinates

always exist. Notice that the transition maps between isothermal co-

ordinate charts are exactly those which are holomorphic with respect

to the variable z = x + iy. This tells us that J is in fact induced by

a holomorphic atlas on X. So J is a genuine complex structure, g is

Hermitian with respect to J and so (X, J, g) is Kähler as above.

3. Let (X, J, ω) be Kähler and Y ⊂ X a complex submanifold. The

restriction of the Kähler metric to Y has associated (1, 1)-form given

by the restriction of ω. Since ω is closed, so too is its restriction.

Hence the induced metric on Y his again Kähler.

4. Fix a Hermitian innerproduct on Cn+1. Then CPn inherits a unique

(up to scale) U(n+ 1)-invariant Riemannian metric, called the Fubini–

Study metric. It is Kähler, as can be seen in various ways. One can

either compute in a local unitary chart, to see that dω = 0, or use
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symmetry arguments to see that ∇J = 0. (See the exercises for one

approach.)

5. The previous two observations combine to give a plethora of exam-

ples: any complex submanifold of CPn inherits a Kähler metric. To find

many such submanifolds, one can look at sets locally cut out as the

common zeros of homogeneous polynomials in n variables.

Exercises 2.2.

1. Prove the equivalence of the various definitions of Kähler by proving

the chain of implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1 in Propo-

sition 2.10. Hint: to prove 4 ⇒ 5 you might like to use the Poincaré

lemma which states that if α is a d-closed p-form then locally one

can write α = dβ for a (p − 1)-form, together with analogous results

for ∂ and ∂̄.

2. Consider the hyperbolic metric on the unit disc D = {|z| < 1} given

by

g =
dx2 + dy2

(1 − x2 − y2)2

Find a global function φ : D → R so that the associated (1, 1)-form

of g is given by ω = i∂̄∂φ.

3. Let U ⊂ CPn be an open set and f : U → Cn+1 \ 0 a local section of

the projection map. Prove that the (1, 1)-form ωU, f = −i∂̄∂ log | f | is

positive and that in fact it doesn’t depend on the choice of section f .

Deduce that there is a U(n + 1)-invariant Kähler metric on CPn

which agrees with each ωU, f .

(This is the Fubini–Study metric.)

4. Prove that there is a unique Riemannian metric on CPn, up to scale,

which is invariant with respect to the action of U(n + 1).

5. Prove that for both of the line bundle metrics from Exercises 2.1(2)

and (3), the curvatures are of the form F = −2πiω where ω is a

positive (1, 1)-form.

2.3 The Kähler identities

Just as on a Riemannian manifold one can define the L2-adjoint d∗ of the

exterior derivative in terms of the Hodge star d∗ = ± ∗ d∗, one can do

similarly for ∂∗ and ∂̄∗ on a Hermitian manifold. One of the fundamental
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facts for Kähler manifolds is the interaction of these operators and the

map L : Λp → Λp+2 given by taking the wedge-product with the Kähler

form ω.

Proposition 2.13 (The Kähler identities). On a Kähler manifold, the following

hold

[∂̄∗, L] = i∂, [∂∗, L] = −i∂̄.

To prove these identities, note first that they only see first order derivatives

of the Kähler structure. This means that by part 6 of Proposition 2.10 that

it suffices to prove them for the flat metric on Cn.

On a Riemannian manifold, we can define the Laplacian on forms:

∆d = d∗d + dd∗

On a Hermitian manifold, we can do similarly with ∂ and ∂̄:

∆∂ = ∂∗∂ + ∂∂∗, ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗

In general these Laplacians have little to do with each other, but on a Kähler

manifold it is a corollary of the Kähler identities that they are all essentially

one and the same:

Corollary 2.14. On a Kähler manifold,

∆∂ = ∆∂̄ =
1

2
∆d

Moreover, denoting this common operator by ∆, we have the formula

∆ f ωn = n i∂̄∂ f ∧ ωn−1

Or, equivalently, ∆ f = 〈i∂̄∂ f , ω〉.

Notice that our convention is that ∆ is one-half of the usual Riemannian Lapla-

cian!

This result has profound implications for the cohomology of compact

Kähler manifolds, called the Hodge theorem. We do not, unfortunately,

have time to go into the details here.

Exercises 2.3.

1. Prove the Kähler identities on Cn and hence on any Kähler manifold.

2. Prove the formulae in Corollary 2.14.

3. Let X be a compact Kähler manifold. Let θ be a (0, 1)-form with

∂̄θ = 0. Prove that there is a function u such that ∂̄∗θ = ∂̄∗∂̄u and

hence that θ − ∂̄u is d- and ∂-closed and coclosed.
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2.4 The ∂̄∂-lemma and curvature of line bundles

Definition 2.15. Given a Kähler manifold (X, J, ω), the cohomology class

[ω] ∈ H2(X, R) is called the Kähler class.

Lemma 2.16 (The ∂̄∂-lemma). Let (X, J, ω) be a compact Kähler manifold and

let α1, α2 be cohomologous real (1, 1)-forms. Then there exists φ : X → R such

that α1 = α2 + i∂̄∂φ. Such a function φ is unique up to the addition of a constant.

Corollary 2.17.

1. Given a holomorphic line bundle L → X and a real (1, 1)-form Φ ∈
−2πic1(L) there is a unique Hermitian metric h, up to constant scale,

with Fh = Φ.

2. If ω1, ω2 are two Kähler metrics in the same cohomology class then there

exists a smooth function φ, unique up to addition of a constant, such that

ω1 = ω2 + i∂̄∂φ.

Definition 2.18. Given two cohomologous Kähler metrics ω1, ω2 a function

φ satisfying ω1 = ω2 + i∂̄∂φ is called the Kähler potential of ω1 relative

to ω2.

If one has locally, ω = i∂̄∂φ, then φ is called a local Kähler potential for ω.

This is one of the most important reasons why Kähler metrics are more tractable

than general Riemannian metrics: the metric is determined by a single scalar

function, rather than a matrix valued function.

Given a cohomology class κ which contains a Kähler metric, we write H

for the space of all Kähler metrics in κ. The above discussion shows that

fixing a reference ω ∈ H identifies H with an open set in the space of

functions modulo constants.

We write κ > 0 to mean that κ contains Kähler metrics.

If κ = c1(L) for some holomorphic line bundle, we can instead look at

the set M of Hermitian metrics h in L for which i
2π Fh is a Kähler metric.

Fixing a reference h ∈ M identifies M with an open set in the space of all

functions. Sending a Hermitian metric to its curvature gives a surjection

M → H with fibres copies of R, coming from the freedom to choose the

scale of h given Fh.

Definition 2.19. If a holomorphic line bundle L → X has the property that

c1(L) contains Kähler metrics, we call L a positive line bundle. This is often

written in shorthand as c1(L) > 0.

A metric h ∈ M is called a positively curved metric.
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Example 2.20. There is a tautological line bundle O(−1) → CPn over

projective space, which inherits a natural Hermitian metric from the map

O(−1) → Cn+1. This induces a Hermitian structure on its dual O(1). One

can check that the curvature of this metric gives exactly the Fubini–Study

metric on CPn. Hence O(1) is a positive line bundle.

Recall that a complex submanifold X ⊂ CPn inherits a Kähler metric by

restriction of the Fubini–Study metric. The same reasoning shows that the

restriction of O(1) to X is a positive line bundle.

The converse to this result is a famous theorem due to Kodaira. We will

sketch the proof of this later on.

Theorem 2.21 (Kodaira). Let L → X be a positive holomorphic line bundle

over a compact complex manifold. Then there exists a holomorhpic embedding

f : X → CPn and an isomorphism f ∗O(1) ∼= L.

Exercises 2.4.

1. Prove the ∂̄∂-lemma as follows.

Let α = dβ be a real (1, 1)-form. By applying the results of Exercise

2.3(3) to θ = β0,1, prove that ∂β = −∂̄∂u for some (complex-valued)

function u. Deduce that α = i∂̄∂φ for a real-valued function φ.

Prove moreover that φ is unique up to the addition of a constant.

2. Verify the claims of Example 2.20. You might find it helpful to revisit

Exercise 2.2(3).

3. Fix a reference ω ∈ H and use Kähler potentials to identify H with

an open set in C∞(X, R)/R. Prove that H is convex with respect to

the natural affine structure on the vector space C∞(X, R)/R.

2.5 The volume and Ricci curvature of a Kähler manifold

The volume form of a Kähler manifold has a particularly nice description.

Lemma 2.22. The volume form of a Kähler (or even just Hermitian) metric is

ωn/n!.

There is an alternative way to think of the volume form of a Kähler man-

ifold which is particularly important. Recall that K = Λn(T∗X) denotes

the canonical bundle of X, a holomorphic line bundle. A Hermitian met-

ric on the anti-canonical bundle K∗ is a nowhere vanishing section of

K ⊗ K̄ = Λn,n which is precisely the bundle where volume forms live.
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Lemma 2.23. Given a Hermitian metric on a complex manifold, the induced

metric on K∗ is given by the volume form ωn

n! ∈ K ⊗ K̄.

Given our above obsession with curvatures of line bundles, it is a natu-

ral question to wonder what the curvature of K∗ is with this Hermitian

structure. We will see shortly it is essentially the Ricci curvature of the

metric.

First, a few words about the whole curvature tensor of a Kähler metric.

Since ∇J = 0, the curvature tensor satisfies certain algebraic constraints.

For a general metric, one can think of the curvature tensor as a skew

section R of Λ2 ⊗Λ2. For a Kähler metric however R is constrained further

to lie in Λ1,1 ⊗ Λ1,1.

This has implications for the Ricci curvature. The Ricci curvature can be

thought of as a symmetric bilinear form Ric ∈ S2(T∗). The additional

symmetries alluded to above in the Kähler setting, mean that Ric is J-

invariant, i.e., Ric(Ju, Jv) = Ric(u, v). This means that one can build a

(1, 1)-form ρ from Ric, just as ω is defined via g: ρ(u, v) = Ric(Ju, v).

Definition 2.24. The form ρ is called the Ricci form of the Kähler manifold.

Proposition 2.25. The curvature of the the anti-canonical bundle (with its in-

duced Hermitian metric) is given by F = −iρ. In particular, the Ricci form is

closed and its cohomology class is fixed by J and independent of the Kähler metric:

[ρ] = 2πc1(X).

This fact has an extremely important consequence: the Ricci curvature of a

Kähler metric is determined by its volume form. More precisely if ω1 and ω2

are two Kähler metrics, we can define a function f by

e f =
ωn

1

ωn
2

The corresponding metrics on K are related by h1 = e f h2. It follows that

the Ricci forms differ by ρ1 = ρ2 + i∂̄∂ f .

Prescribing the Ricci curvature of a Kähler manifold is the same as prescribing its

volume. In particular, this is zeroth order in the metric, and second order in the

Kähler potential!

Exercises 2.5.

1. Prove Lemma 2.22.

Deduce that if X ⊂ CPn is a complex submanifold then its volume

is a positive integer.
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2. Prove Lemma 2.23.

3. Prove Proposition 2.25.

4. Compute the Ricci form of the Fubini–Study metric on CPn.

5. Compute the Ricci form of the hyperbolic disk (Exercise 2.2(2)).

3 The Calabi conjecture and Kähler–Einstein metrics

Standard references for the material of this section are the books of Aubin

[3] and Tian [47] as well as the original article of Yau [48].

3.1 The Calabi–Yau theorem

As we have explained, the Ricci form of a Kähler manifold lies in a fixed

cohomology class: ρ ∈ 2πc1(X). In the 1950s, Calabi conjectured that this

was the only constraint on ρ. This result was proved in 1978 by S.-T. Yau

[48], a theorem which won him the Fields medal.

Theorem 3.1 (The Calabi–Yau theorem). Let X be a Kähler manifold and κ a

Kähler class on X. Given any real (1, 1)-form ρ representing 2πc1(X), there is a

unique Kähler metric in κ with Ricci form ρ.

Equivalently, if V is any volume form with total volume equal to 〈κn, [X]〉/n!

then there is a unique Kähler metric ω ∈ κ with volume form ωn/n! = V.

Corollary 3.2. Suppose X is a compact Kähler manifold with c1(X) = 0 (as an

element of H2(X, R)). Then each Kähler class on X contains a unique Ricci flat

Kähler metric.

A Kähler manifold with c1(X) = 0 is called a Calabi–Yau manifold, in ref-

erence to this result. (Although be warned there are other, more stringent,

versions of the definition of Calabi–Yau manifolds, the strictest being that

K should be holomorphically trivial and X simply connected.)

The first step in the proof is to express the problem as a Monge–Ampère

equation.

Definition 3.3. Let ω ∈ κ be a reference metric. Given a Kähler potential

φ, write ωφ = ω + i∂̄∂φ. The map M : H → C∞(X, R) defined by

M(ωφ) =
ωn

φ

ωn

is called the Monge–Ampère operator. We will often just write M(φ) =
M(ωφ) when we think of M as acting on functions.
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Now define a function f by V = e f ωn/n!. We seek φ such that M(φ) = e f .

In this language, the Calabi–Yau theorem amounts to the following:

Theorem 3.4 (Yau). Let (X, ω) be a compact Kähler manifold. Define the

Monge–Ampère operator as above (with reference to ω). Then given any f with∫
e f ωn =

∫
ωn, there is a solution φ, unique modulo additive constants, to the

equation M(φ) = e f . Moreover, ωφ is a positive (1, 1)-form

We will discuss some (but not all!) of the steps in the proof of this in the

exercises in this and the subsequent section.

Exercises 3.1.

1. (a) Suppose that φ ∈ C2. Prove that at a maximum of φ, M(φ) ≥ 1,

whilst at a minimum of φ, M(φ) ≤ 1.

(Hint one can find holomorphic coordinates at a point p in

which the metric is Euclidean at p and in which the complex

Hessian i∂̄∂φ of φ is diagonal at p.)

(b) Prove that if φ is C2 and M(φ) > 0 then ωφ is a positive (1, 1)-
form. (Hint: show that if ωφ vanishes on a complex line then

M(φ) = 0.)

2. Let ω ∈ H and V be a volume form with total volume equal to that

of ω. Let {φt : t ∈ [0, 1]} denote a path of Kähler potentials with

φ0 = 0, giving a path of Kähler metrics ωt = ωφt . Define

E =
∫ 1

0

[∫

X

∂φ

∂t

(
ωn

t

n!
− V

)]
dt

(a) Prove that E depends only on ω1 and not on the path of Kähler

potentials joining it to ω, hence it defines a function E : H → R

by setting E(ω1) equal to the above integral for any choice of

path φt.

(b) Prove that ω1 ∈ H is a critical point of E if and only if ω1 has

volume form ωn
1 /n! = V.

(c) Let ψ ∈ C∞(X, R) be a non-constant Kähler potential and con-

sider the corresponding linear path ωs = ωsψ in H. Prove that

E(ωs) is strictly convex in s.

Deduce that if a solution to the Calabi conjecture exists, it must

be unique.
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3.2 Kähler–Einstein metrics

In order to admit a Ricci flat Kähler metric, a Kähler manifold X must have

c1(X) = 0. The Calabi–Yau theorem tells us this is also sufficient. One can

also of course consider other types of Einstein metric.

Definition 3.5. A Riemannian metric is called Einstein if Ric = λg where

λ is a constant, called the Einstein constant.

Example 3.6. A Kähler metric on a Riemann surface is Einstein if and only

if it has constant curvature. Every Riemann surface carries such a metric

which is unique except in the case of CP1, where there is a 3 dimensional

family of round metrics.

In higher dimensions, Einstein metrics are difficult to find. But in Kähler

geometry they are, as we will see, especially abundant.

First we point out that there is an “obvious” necessary condition. A Kähler

metric is Einstein precisely when its Kähler and Ricci forms are propor-

tional: ρ = λω. Recall that [ρ] = 2πc1(X). So if λ > 0 it is necessary that

c1(X) > 0, i.e., that the anti-canonical bundle be positive, whilst if λ < 0

it is necessary that c1(X) < 0, i.e., that the canonical bundle be positive.

(Warning, the notation here is misleading: there are certainly times when

none of c1(X) > 0, c1(X) < 0 or c1(X) = 0 is true!)

Definition 3.7. A complex manifold with c1(X) > 0, i.e., with positive

anti-canonical bundle, is called a Fano manifold.

Such manifolds are rare. Indeed it is know that in each dimension there

is a finite number of deformation classes of Fano manifolds. In complex

dimension 2, they are the so-called Del Pezzo surfaces, blow-ups of CP2 at

at most 8 points in sufficiently general position. In complex dimension 3

there are 105 different deformation types of Fanos, a famous result given

by combining the work of Iskovkikh, Mori and Mukai (see, for example,

the book [25]).

We will see that when c1(X) ≤ 0, this necessary condition is also sufficient

for the existence of a Kähler–Einstein metric. However, when c1(X) > 0

there are obstructions to existence and the whole question is far more

subtle (and at the time of writing currently unresolved).

We saw above how to write a Ricci flat Kähler metric as a Monge–Ampère

equation. We will now do the same for non-zero Einstein constants.

By scaling we can reduce to the case λ = ±1. Assume that λc1(X) > 0,

which is the necessary condition for existence of a Kähler–Einstein metric.
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Let ω be a reference metric with 2πc1(X) = λ[ω] and write ρ for the

Ricci form of ω. Write also ρφ for the Ricci form of ωφ. We want to solve

ρφ = λωφ, an equation for the potential φ which we now rewrite in terms

of the Monge–Ampère operator M.

Recall that M : H → C∞(X, R) is defined by M(ωφ) = ωn
φ/ωn. The Ricci

forms ρφ and ρ are then related by

ρφ = ρ + i∂̄∂ log M(φ)

Since ρ and λω are in the same cohomology class we also know, by the ∂̄∂-

lemma, that there is a function f such that ρ = λω + i∂̄∂ f . (This function

f is often called the Ricci potential of ω.) Meanwhile ωφ = ω + i∂̄∂φ. So

ρφ = λωφ becomes

i∂̄∂( f + log M(φ)) = iλ∂̄∂φ

In other words, we want to find φ : X → R such that

M(φ) = e f+λφ.

This is again a Monge–Ampère equation.

As mentioned above, Yau proved the existence of a solution in the case

λ = 0. When λ = −1, existence was proved independently by Aubin [2]

and Yau [48].

Theorem 3.8 (Aubin, Yau). Let (X, ω) be a compact Kähler manifold. Given

any smooth function f : X → R, the equation M(φ) = e f−φ has a unique solu-

tion (where M is the Monge–Ampère operator as defined above, with reference to

the metric ω).

It follows that if c1(X) < 0, there is a unique Kähler–Einstein metric on X, up to

scale (whose Einstein constant is necessarily negative).

Steps in the proof of this result are outlined in the exercises. A key part

is a C0 estimate on a solution of M(φ) = e f+λφ in terms of f . This is

fairly straightforward when λ < 0. When λ = 0 (the case of the Calabi

conjecture) the proof is much more involved.

When λ > 0 the hoped-for bound is known to be false and things are

very different. There are obstructions to the existence of Kähler–Einstein

metrics on Fano manifolds, some of which we will see later. The full

question of deciding when such a metric exists is still an open problem.

We will state a famous conjecture of Donaldson, Tian and Yau about this

later on.

Warning! Our conventions differ from those often used in the literature, where

you will find, for example, the Monge–Ampère operator defined via the equation
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M(φ) = (ω − i∂̄∂φ)n/ωn. Changing from our notation to this just amounts to

swapping the sign of φ, but this can have the disconcerting effect of seeming to

send λ to −λ in the Monge–Ampère equation!

Exercises 3.2. The goal of these exercises is to sketch the proof of The-

orem 3.8. The idea is to prove that the set of functions f for which

M(φ) = e f−φ has a solution is both open and closed. Then, by connected-

ness, it will be solvable for all f . This is often referred to as the continuity

method.

1. Write U ⊂ C5,α for the set of φ ∈ C5,α for which ωφ is a positive

(1, 1)-form.

Prove that the map F defined on smooth Kähler potentials given by

F(φ) = log M(φ) + φ

extends to a map U → C3,α.

Write S ⊂ C3,α for the image of F. We will show S is both open and

closed.

2. Prove that the derivative of F at φ is given by DFφ(ψ) = ∆φ(ψ) + ψ,

where ∆φ is the Laplacian of ωφ.

Deduce that S is open.

3. Let fn be a sequence in S which converges to f in the C3,α-norm and

let φn ∈ U solve F(φn) = fn. To prove S is closed we will show that

a subsequence of the φn converges to a solution of F(φ) = f . There

are several steps.

(a) Step 1, C0 bound.

Prove that if φ ∈ C2, then ‖φ‖C0 ≤ ‖F(φ)‖C0 .

(Hint: go back to Exercise 3.1(1).)

(b) Step 2, C2,α bound given the C0 bound.

For this you can quote the following result (or if you’re brave

try and prove it yourself!)

Proposition. Let W be a set of C5 Kähler potentials, which are uni-

formly bounded in C0. If the set {F(φ) : φ ∈ W} is bounded in C3

then W is bounded in C2,α for any 0 < α < 1.

(This part also holds for λ ≥ 0)

(c) Step 3, regularity.

Prove that if φ ∈ C2 and F(φ) ∈ Cr,α then φ ∈ Cr+2,α.

(This part also holds for λ ≥ 0)
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(d) Deduce that S is closed and hence complete the proof of Theo-

rem 3.8.

4 Extremal Kähler metrics

The standard initial references for this section are the two foundational pa-

pers of Calabi [6, 7]. For a description of the problem in terms of moment

map geometry (not described here) see the original paper of Donaldson

[13] and the notes of Thomas [43]. For another discussion of the subject,

see the article [16] of Donaldson which lays the groundwork for attacking

the toric case.

4.1 Calabi energy

There is an old question (going back at least as far as Berger?) to find a

“best Riemannian metric” on a given manifold. In the Kähler setting this

vague question can be made extremely precise.

If one supposes that c1(X) is either zero or definite then Kähler–Einstein

metrics provide ideal candidates for “best metrics” on the manifold. Cal-

abi’s next contribution was to define a notion of “best” which works for

any Kähler class.

Calabi’s idea is to try and minimise the function C : H → R which is

defined by

C(ω) =
∫

X
S(ω)2 ωn

n!

where S(ω) is the scalar curvature of ω.

Lemma 4.1. For Kähler metrics in a fixed cohomology class, the following quan-

tities differ only by multiplication by and addition of topological constants, i.e.,

constants depending only on X and [ω]:

∫

X
S(ω)2 ωn

n!
,

∫

X
|Ric(ω)|2

ωn

n!
,

∫

X
|R(ω)|2

ωn

n!
.

(Here the pointwise norms of tensors are taken with respect to the metric ω; R is

the full curvature tensor of ω.)

Because of this, minimising C amounts to minimising the L2-norm of cur-

vature over H. So a minimum (if it exists!) can be thought of as the “least

curved” metric in a given cohomology class.

Definition 4.2. The quantity C(ω) is called the Calabi energy of ω.
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To compute the Euler–Lagrange equations of Calabi energy, one needs the

following formulae for the variation of scalar curvature.

Lemma 4.3. Given φ ∈ C∞(X, R) and ω ∈ H, write ωt = ω + ti∂̄∂φ. Then,

at t = 0,
d

dt
S(ωt) = ∆2φ − 〈ρ, i∂̄∂φ〉

where all geometric quantities are computed with respect to ω.

It turns out that infinitesimal changes in scalar curvature are intimately

related to deformations of the data (X, J, ω) to explain this relation, we

need some notation.

Definition 4.4. Let D : C∞(X, R) → Ω0,1(TX) be the operator defined by

D( f ) = ∂̄(ξ f )

where ξ f is the Hamiltonian vector field corresponding to f . I.e., for any

other vector field v, ω(ξ f , v) = v · f .

Remark 4.5. Note that here, in writing ∂̄v we are blurring the distinc-

tion between a real vector field, v ∈ Γ(TX), and its (1, 0)-component

v1,0 ∈ Γ(TX1,0) which is a section of a holomorphic vector bundle. When

we write ∂̄(v) we mean what some authors write as ∂̄(v1,0). The point is

that projection onto the (1, 0)-component sets up a complex linear isomor-

phism between the bundles (TX, J) and TX1,0. In this way we transfer the

holomorphic structure of TX1,0 onto the real tangent bundle.

So D( f ) measures the failure of the Hamiltonian flow of f to be holo-

morphic. Since the Hamiltonian flow of f automatically preserves ω, and

the flow of a holomorphic vector preserves J, when f ∈ kerD, ξ f is and

infinitesimal automorphisms of (X, J, ω). In fact, when b1(X) = 0, all

symplectic vector fields on X are Hamiltonian and so kerD is exactly the

infinitesimal automorphisms of (X, J, ω) plus constants.

Lemma 4.6.

D∗D(φ) = ∆2φ − 〈ρ, i∂̄∂φ〉+
1

2
〈∇S,∇φ〉

where D∗ is the L2 adjoint of D.

Proposition 4.7. Given φ ∈ C∞(X, R) and ω ∈ H, write ωt = ω + it∂̄∂φ.

Then, at t = 0,
d

dt
C(ωt) =

∫

X
φD∗DS(ω)

ωn

n!

Hence ω is a critical point of C : H → R if and only if the Hamiltonian flow of

S(ω) is holomorphic.
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Definition 4.8. A Kähler metric for which DS = 0 is called extremal.

Note that if X admits no non-zero holomorphic vector fields, then an ex-

tremal metric automatically has constant scalar curvature.

Lemma 4.9. Let ω be a Kähler metric of constant scalar curvature and suppose

that λ[ω] = 2πc1(X) for some λ. Then ω is in fact Kähler–Einstein: ρ = λω.

So constant scalar curvature metrics are a generalisation of Kähler–Einstein

metrics which can be looked for in any Kähler class.

Lemma 4.10. The mean value of the scalar curvature of ω ∈ H does not depend

on the choice of ω, only on X and [ω].

Proof.
∫

X S ωn =
∫

nρ∧ωn−1 = 2πn〈c1(X) · [ω]n−1, [X]〉 which is indepen-

dent of the choice of metric in the class [ω].

This means that when looking for a constant scalar curvature metric one

at least knows what constant to aim for!

Exercises 4.1.

1. Given a real (1, 1)-form ρ, derive a formula for |ρ|2ωn in terms of

ρ ∧ ρ ∧ ωn−2 and (Λρ)2ωn.

Deduce that
∫

X |Ric |2ωn and
∫

X Sωn differ by a constant which de-

pends only on X and the Kähler class [ω] but not on the metric ω

itself.

2. By differentiating the formula Sωn = nρ ∧ ωn−1, prove Lemma 4.3.

Can you prove Lemma 4.6?

3. Prove Proposition 4.7.

4. Using the Kähler identities, prove that a metric has constant scalar

curvature if and only if its Ricci form is harmonic.

Deduce Lemma 4.9

4.2 Some examples of extremal metrics

Calabi’s first examples. In the paper introducing extremal metrics [6],

Calabi also provided the first non-trivial examples (i.e., with non-constant

scalar curvature). He considered metrics on the projective completion Xk

of O(k) → CPn−1 which are invariant under the action of U(n). The
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generic orbits of this action have codimension 1 and so the partial differ-

ential equation ∂̄∇S = 0 becomes an ordinary differential equation which

one can solve.

More explicitly, the complement of the zero and infinity sections of Mk →

CPn−1 is covered by a single chart with image Cn \ 0, in which the U(n)-
action is standard. One then considers Kähler potentials which depend

only on the U(n)-invariant variable t = log ∑ |zj|
2. So one puts

φ(z, z̄) = u(t)

where u : R → R must satisfy certain conditions as t → ±∞ to correspond

to a Kähler potential of a metric on Cn \ 0 which extends to the whole of

Xk.

One then converts the extremal metric equation into an ODE for u which

can then be shown to have a solution with the required boundary condi-

tions.

The theorems of Hong and Brönnle. The next theorems we mention also

concern ruled manifolds, i.e., of the form P(E) where E → Y is a holo-

morhpic vector bundle. To state these we will need the definition of a

Hermitian–Einstein connection.

Definition 4.11. Given a holomorphic vector bundle E → Y over a Kähler

manifold (Y, ω), a Hermitian metric in E is called Hermitian–Einstein if the

curvature F ∈ Ω1,1(u(E)) of the Chern connection satisfies the equation

〈F, ω〉 = c · Id

for a constant c.

The constant here is topological (just as for the mean value S̄ of the scalar

curvature). It is determined by the slope of E:

µ(E) =
〈c1(E) ∧ ωn−1, [X]〉

rank E

If E admits a Hermitian–Einstein connection then

c =
2πµ(E)

(n − 1)!V

where V is the volume of Y.

The theorems of Hong and Brönnle concern so-called adiabatic Kähler

classes on P(E). First, note that the fibrewise tautological bundles fit to-

gether to give a line bundle over P(E). We denote the dual of this bundle
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by L → P(E). Note that on each fibre, L is the hyperplane bundle of that

projective space. The classes that Hong and Brönnle consider are of the

form κr = c1(L) + rπ∗κ for r large, where π : P(E) → Y is the projection

and κ is a Kähler class on the base.

Theorem 4.12 (Hong, [23]). Let E → Y be a simple holomorphic vector bundle

over a Kähler manifold. Assume that the class κ admits a constant scalar curva-

ture metric ω and that E admits a Hermitian–Einstein metric with respect to this

ω. Finally assume that Y has no holomorphic vector fields. Then for all large r,

the class κr on P(E) admits a constant scalar curvature metric.

Theorem 4.13 (Brönnle, [5]). Let (Y, ω) be a compact Kähler manifold with

constant scalar curvature and no holomorphic vector fields. Let V → Y be a

holomorphic vector bundle which splits as a direct sum V = E1 ⊕ · · · ⊕ Er,

where each Ej is as in Hong’s theorem. Suppose moreover that all of the Ej have

different slopes. Then for all large r, the class κr on P(V) admits an extremal

Kähler metric.

The first step in the proofs of these results is the following observation.

A Hermitian metric in E defines a Hermitian metric in L which restricts

to each fibre to a Fubini–Study metric. Write ω0 for the real (1, 1)-form

associated to the curvature of L and ωr = ω0 + rπ∗ωY where ωY is any

metric on the base. The key observation is that when r is large the bundle

P(E) → Y becomes locally a product. More precisely, fix a ball B ⊂ Y

and a trivialisation of E over B. By taking r large and restriction atten-

tion to what happens over B, one can make ωr as close as one likes to a

product ωFS ⊕ ωB of a fixed Fubini–Study metric and a flat metric on B.

In particular the scalar curvature enjoys S(ωr) = 1 + O(r−1). The next

step is to compute the O(r−1) contribution. Here one sees the scalar cur-

vature of the base metric ωY as well as the curvature endomorphism of

E, in the guise 〈F, ωY〉. When E is Hermitian–Einstein and ωY has con-

stant scalar curvature this means that S(ωr) = 1 + O(r−2). Meanwhile in

Brönnle’s situation, 〈F, ωY〉 gives a vertical holomorphic vector field v and

ξS(ωr) = v +O(r−2). In both cases then the geometric hypotheses concern-

ing metrics on Y and E (or V) enable us to solve the required problem on

P(E) (or P(V)) to one higher order in r−1. Next one corrects the higher

order errors by solving linear versions of the two non-linear PDEs which

were solved via the hypotheses. Doing this one obtains an approximate

solution to the equation to arbitrary order. Finally one uses a parameter

dependent implicit function theorem to adjust this approximate solution

to a genuine one.
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4.3 Futaki’s invariant

We next discuss an obstruction to the existence of constant scalar curvature

Kähler metrics (and in particular Kähler–Einstein metrics) introduced by

Futaki [20]. Given a Kähler class κ, the Futaki invariant associates to each

holomorphic vector field v on X a complex number F(v).

Throughout this section we use “holomorphic vector field” to mean a section v

of TX for which Lv J = 0. Given such a vector field, v1,0 is then a holomorphic

section of TX1,0 in the usual sense. Conversely, given a holomorphic section of

TX1,0, its real part v has the property that Lv J = 0.

To begin with, we will assume that κ = c1(L) and that the vector field v

lifts to a vector field v̂ on L which preserves the fibrewise linear structure.

To define F(v) we will also pick a Hermitian metric h in L whose curvature

F = −2πiω defines a Kähler metric on X.

We can split v̂ into vertical and horizontal pieces using the Chern connec-

tion A in L:

v̂ = v♭ + f ξ

where v♭ is the horizontal lift of v via A, ξ is the generator of the S1-

action on L and f : X → C is a complex valued function giving the vertical

component of v̂. Note that f is determined up to an overall constant by the

fact that ∂̄ f = (ιvω)0,1, which follows from the fact that v̂ is holomorphic.

We now define

F(h, v) =
∫

X
(S − S̄) f

ωn

n!

where

S̄ =
1

V

∫

X
S(ω)

ωn

n!

is the average value of the scalar curvature of Kähler metrics in H.

It may seem at first sight that this quantity depends on our choice of Her-

mitian metric h in L, but one can show by differentiating the formula with

respect to h that this is not actually the case.

There is an alternative formula for F involving the Greens operator G (the

inverse of the Laplacian on functions). Set g = G(S − S̄), then one can

check that

F(ω, v) =
∫

X
v1,0 · g

ωn

n!

agrees with the previous definition of F. The second version has the ad-

vantage that it makes sense for arbitrary Kähler classes and holomorphic

vector fields. To define g one needs to select ω ∈ H, as the notation indi-

cates, but again the dependence on ω is illusory.
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Theorem 4.14 (Futaki). The quantity F(ω, v) above does not depend on the

choice of ω ∈ H.

Write h(X) for the space of all holomorphic vector fields on X.

Definition 4.15. The map F : h(X) → C defined by F(v) = F(ω, v) for

some ω ∈ H is called the Futaki invariant of H.

The following is immediate.

Lemma 4.16. If there is a constant scalar curvature metric in H, then F = 0.

The proofs of the next two Lemmas are exercises.

Lemma 4.17. If F = 0 then any extremal metric in H actually has constant

scalar curvature.

Lemma 4.18. If u, v ∈ h(X) then F([u, v]) = 0. In other words, F : h(X) → C

is a character.

Exercises 4.2.

1. Prove Theorem 4.14 in the case that v lifts to a holomorphic vector

field v̂ on L. To do this, let h0 be a positively curved metric in L and

consider the path ht = e2πtφh0, where φ ∈ C∞(X, R). Now prove that

the derivative of F(ht, v) with respect to t is zero.

2. Prove Lemma 4.17 by considering the Futaki invariant of the holo-

morphic vector field ∇S = JξS.

3. The aim of this question is to prove Lemma 4.18. Let u, v ∈ h(X) be

holomorphic vector fields and let ω be a Kähler metric.

Let ft : L → L be the one-parameter group of biholomorphisms gen-

erated by u. Show firstly that f ∗t ω is Kähler for all t.

Next, prove that
d

dt
F( f ∗t ω, v) = F(ω, [u, v]).

4.4 A localisation formula for F(v)

The Futaki invariant can be quite awkward to calculate directly. We now

state (but give no proof of) a way to compute it as a sum of local contribu-

tions from the fixed loci of v. This technique was introduced by Futakin

in the case of Fano manifolds and Ding–Tian for an arbitrary positive line

bundle.
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Definition 4.19. A holomorphic vector field v on a complex manifold X

is called non-degenerate if the zero set of v is a disjoint union of connected

complex submanifolds {Zj} of X. Moreover, we require that at each z ∈ Zj,

the linear map

Dv : TzX → TzX

descends to an isomorphism TzX/TzZj.

In the presence of a Kähler metric, we can identify the quotient Qz =

TzX/TzZj with the normal Nz = (TzZj)
⊥ and then the map induced by Dv

is the projection (∇v)⊥ of ∇v to N.

In the simplest case, where v has an isolated zero, we can write in coor-

dinates v = ∑ vj
∂

∂zj
where vj(0) = 0. This zero is then non-degenerate

precisely when the following matrix is invertible:
(

∂vi

∂zj

)

i,j=1,...,n

On a component of the zero locus, Dv descends to a an isomorphism Lj of

the bundle Q = TX/TZj. Since Lj is holomorphic, its trace tj = Tr(Lj) is

constant.

We will also need another constant associated to each component Zj. For

this we suppose as before that v lifts to a vector field v̂ on the positive

line bundle L → X. Choosing a positively curved metric in L we obtain a

splitting

v̂ = v♭ + f ξ

for a complex valued function f which is uniquely determined by v up to

the addition of a constant (corresponding to the different lifts of v to L).

We know that ∂̄ f = (ιvω)0,1 and so f restricts to a holomorphic function

on each component Zj of the zero locus, which implies in fact that f is

constant on each Zj. We write f j for the value of f on Zj.

Finally, we note that the normal bundle Nj = (TZj)
⊥ and the quotient

bundle Qj = TX/TZj are canonically isomorphic and so the holomorphic

bundle Qj inherits a Hermitian structure. We write Fj ∈ Ω1,1(u(Qj)) for

the curvature form of this metric.

With the definitions of Lj, tj, f j and Fj in hand, we can now state the local-

isation formula.

Theorem 4.20. If v is a non-degenerate holomorphic vector field with zero locus

{Zj}, then

F(v) = ∑
j

∫

Zj

(
tj + c1(X)

) (
π f j + [ω]

)n
− nS̄

(n+1)π

(
π f j + [ω]

)n+1

det
(

Lj +
i

2π Fj

)
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A word or two is in order about how to interpret this expression. The

numerator and denominator of the integrand can be expanded as series

whose coefficients are differential forms, so the integrand as a whole is ex-

pressible as a series whose coefficients are differential forms. To compute

the integral over Zj we simply keep the part which is of degree equal to

the dimension of Zj. Whilst this is somewhat cumbersome to explain in

words, it is straightforward to carry out in practice.

Exercises 4.3. These exercises are taken from Tian’s book [47], where you

can find the proofs if you are struggling.

1. Suppose that [ω] = 2πc1(X) and that the positive line bundle we are

considering is K∗, the anti-canonical bundle.

(a) Prove that there is a natural lift of any holomorphic vector field

v to a field v̂ on K∗ preserving the fibrewise linear structure.

(b) Prove that in this case if v is non-degenerate then on each com-

ponent of its fixed locus, f j = tj.

Deduce that for the case of the anti-canonical bundle,

F(v) =
πn

n + 1 ∑
j

∫

Zj

(
tj + c1(X)

)n+1

det
(

Lj +
i

2π Fj

)

2. Prove that if all of the zeros of v are isolated points z1, . . . , zk, then

F(v) = πn ∑
j

(
tj −

nS̄
n+1 f j

)
f n
j

det Lj

3. Let X be a complex surface, [ω] = 2πc1(X). Let v be a non-degenerate

holomorphic vector field and write the zero locus of v as a collection

of points {zj : j ∈ J} and curves {Zk : k ∈ K}. Prove that

F(v) =
π3

3 ∑
j∈J

t3
j

det Lj
+

π3

3 ∑
k∈K

Lk

(
2〈c1(X), [Zk]〉+ 2 − 2g(Zk)

)

(Here, g(Zk) is the genus of Zk and we note that on Zk, Lk is a holo-

morphic isomorphism of a rank 1 bundle, hence multiplication by a

constant, which we also denote by Lk.)

4. Let X denote the blow-up of CP2 in the point [1, 0, 0].

(a) Show that the C∗-action on CP2 induced by the action (x, y, z) 7→
(x, λy, λz) lifts to X.
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(b) Copmute the Futaki invariant of the generator of this action

with respect to the anti-canonical bundle and deduce that X

does not admit a Kähler–Einstein metric.

5. Let X denote the blow-up of CP2 in the points [1, 0, 0] and [0, 1, 0].

(a) Show that the C∗-action on CP2 induced by the action (x, y, z) 7→
(x, λy, λz) lifts to X.

(b) Copmute the Futaki invariant of the generator of this action

with respect to the anti-canonical bundle and deduce that X

does not admit a Kähler–Einstein metric.

4.5 An algebro-geometric formula for F(v)

There is another way to compute Futaki invariants using a result from

algebraic geometry called the Hirzebruch–Riemann–Roch formula. This

was first observed by Donaldson [16]. In this instance it is essential that

we assume the holomorphic vector field v on X lifts to a holomorphic

vector field v̂ = v♭ + f ξ on L where it generates a C∗-action. We now

consider the vector spaces Vk = H0(X, Lk) for all values of k. The first

application of Hirzebruch–Riemman–Roch that we need is a formula for

the dimension of Vk.

Proposition 4.21. For all large values of k, the dimension dk of Vk is given by a

polynomial q(k) in k. Explicitly,

q(k) = Ckn + Dkn−1 + · · ·

where n = dim X, C =
∫

X
ωn

n! and D =
∫

X
ρ∧ωn−1

(n−1)!
.

The next quantity we will apply (the equivariant version of) Hirzerbuch–

Riemann–Roch to is the weight of the C∗-action on Vk. Since C∗ acts on L

it also acts on sections of Lk and hence on Vk and so on the complex line

Λdk Vk. Any action of C∗ on a complex line is determined by an integer w,

called the weight with λ ∈ C∗ acting as multiplication by λw. In our case

we obtain for each Λdk Vk a weight wk.

Proposition 4.22. For all large values of k, the weight wk of the action of C∗ on

λdk Vk is given by a polynomial p(k). Explicitly,

p(k) = Akn+1 + Bkn + · · ·

where n = dim X, A =
∫

X
f ωn

n! and B =
∫

X
f S(ω) ωn

n! .

28



Corollary 4.23. For large k there is an expansion

wk

kdk
=

A

C
−

F(v)

C
k−1 + · · ·

where F(v) is the Futaki invariant.

The fact that the Futaki invariant can be read off as the coefficient of k−1 in

this expansion has two consequences. Firstly, it is often possible to com-

pute wk and dk directly, without recourse to the Hirzebruch–Riemann–

Roch formulae; this then gives an alternative way to compute F(v). Sec-

ondly, and perhaps more importantly, this formulation makes sense for

C∗-actions on singular manifolds with positive line bundles. This will be

of paramount importance in what follows.

5 The Yau–Tian–Donaldson conjecture with a broad

brush

5.1 The Riemannian geometry of M

Recall that M denotes the space of positive Hermitian metrics in a fixed

holomorphic line bundle. Fixing a reference metric h0 any other metric is

of the form h = e2πφh0 for some function φ, which satisfies the inequality

that i
2π Fh0

+ i∂̄∂φ > 0. Thus we can identify M with an open set in an

affine space modelled on C∞(X, R). This affine structure is well adapted to

the Calabi conjecture, as we saw in Exercise 3.1(2). However, for the study

of constant scalar curvature or more generally extremal Kähler metrics,

there is another geometry in M which is better suited. (Almost everything

we say in this section applies to the more general case of Kähler metric in

an arbitrary Kähler class, where M should be taken to mean the space of

Kähler potentials with respect to some reference metric.)

There is a natural Riemannian metric on M, discovered independently by

Donaldson, Mabuchi and Semmes [14, 33, 39], which has some remarkable

properties. To define the metric, note that there is a natural identification

ThM ∼= C∞(X, R). Now set

〈φ, ψ〉h =
∫

X
φψ

ωn
h

n!

where ωh = i
2π Fh is the Kähler form associated to h. This innerproduct

depends on h and so gives a curved metric on M, not directly compatible

with the affine structure.

29



We now follow closely the exposition of [14]. To describe the Levi-Civita

connection, we take a path ht = e2πφt h0 in M and a path of tangent vectors

along ht, which amounts to a function ψ on X × [0, 1]. A connection on

TM is determined by the derivative Dtψ of ψ along ht.

Lemma 5.1. In the above set-up, the covariant derivative of ψ along ht is

Dtψ =
∂ψ

∂t
+

1

2

(
∇ψ,∇

∂φ

∂t

)

ωht

where the innerproduct on the right hand side is pointwise between vector fields

on X, using the metric ωht
defined by ht.

To verify this, one must simply check that the connection is both metric

and torsion free. (In infinite dimensions the Levi-Civita connection is not

guaranteed to exist, but when it does it is unique.) With this definition in

hand, the follow facts are the result of calculations.

Proposition 5.2.

1. The curvature tensor of R is given by

R(φ, ψ)(χ) = −
1

4
{{φ, ψ}h, χ}h

where {·, ·}h is the Poisson bracket of ωh.

2. The curvature tensor R is covariant constant: ∇R = 0.

3. The sectional curvatures of M are non-positive. More precisely, at h ∈ M,

R(φ, ψ, φ, ψ) = −
1

4
‖{φ, ψ}h‖

2
h

where ‖ · ‖ is the L2-norm on functions associated to ωh.

What is remarkable is that these are identical to the formulae for the cur-

vature of certain symmetric spaces. Let K be a compact Lie group andG

its complexification. A choice of bi-invariant Riemannian metric on K

makes it a positively curved symmetric space, but one can also construct

from here the so-called negatively curved dual. The bi-invariant form on

k endows G/K with a Riemannian metric which is invariant under the

action of G by left multiplication. Given x ∈ ik, we write x also for the

induced vector field on G/K. Then the curvature tensor of G/K is given

by R(x, y)(z) = −[[x, y], z].

Because of this, heuristically at least M can be thought of as the negatively

curved symmetric space dual to the group whose Lie algebra is C∞(X, R)
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endowed with the Poisson bracket of some symplectic form ω. When

ω = i
2π FA for some unitary connection A in a line bundle L, there is just

such a group, namely the group of maps L → L, taking fibres isometrically

to fibres and which also preserve A. This group should play the rôle of K

in the above story. At this point, however, the analogy breaks down: there

is no complexification of K.

Despite this, traces of the “phantom group” are still to be found. For ex-

ample, 1-parameter subgroups C∗ ⊂ G descend to G/K to give geodesics,

so one can think of the geodesics of M in this way. The following lemma

gives describes the geodesic equation.

Lemma 5.3. A function φ : X × R → R corresponds to a geodesic t 7→ e2πφt h

in M if and only if

φ̈ +
1

2
|∇φ̇|2ht

= 0.

Note that a general geodesic involves solving a PDE and so existence is

not guaranteed as it is in the finite dimensional case (where geodesics

are solutions of ODEs). There is one situation in which some geodesics

are easy to describe. Suppose that the holomorphic isometry group K of

(X, ω, J) has positive dimension. The complexification G of K acts on X

preserving J, but not necessarily ω. This defines a map G/K → H, by

pull-back. It is now an exercise to check that geodesics in G/K map to

geodesics in H.

It is possible to express the geodesic equation as a degenerate Monge–

Ampère equation. Given a function φ : X × R → R we extend it to a

rotationally invariant function Φ : X × C∗ by Φ(x, teiθ) = φ(x, t). Write Ω0

for the pull-back of a Kähler metric ω0 on X to the product X × C∗ and

write Ω = Ω0 + i∂̄∂Φ. The following is a calculation.

Lemma 5.4. d The function φ a geodesic in M if and only if the form Ω satisfies

the degenerate Monge–Ampère equation Ωn+1 = 0.

A great deal of effort has gone into understanding the geodesics in M.

For more information see the book [22] and the references therein.

Exercises 5.1.

1. Prove Lemma 5.1.

2. Prove Proposition 5.2.

3. Prove Lemmas 5.3 and 5.4.
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4. Prove the remark after Lemma 5.3, namely that if v is a holomorphic

vector field on X lifting to L, where it generates a flow ft : L → L of

fibrewise linear maps, then the path f ∗t (h) in M is a geodesic.

5.2 Mabuchi energy

We next explain how the question of whether or not M contains a constant

scalar curvature metric is encoded in a special function, called Mabuchi

energy E, first introduced by Mabuchi in a seminal article [32]. To define

E, we choose a path ht = e2πφt h0 of metrics in M, where φt ∈ C∞(X, R) is

a smooth path of Kähler potentials. In the following we write ωt =
i

2π Fht

Lemma 5.5. The quantity

E(ω0; ω1) =
∫ 1

0

∫

X
(S(ωt)− S̄)

∂φ

∂t

ωn
t

n!

depends only on the end points ω0 and ω1 and not on the path ht joining h0 to h1.

Definition 5.6. The quantity E(ω0; ω1) is called the Mabuchi energy of ω1

relative to ω0.

Fixing a reference metric ω0, the function E : H → R defined by E(ω) =
E(ω0; ω) is simply called Mabuchi energy. Note that E depends on the

choice of ω0. Changing the reference metric will change E by a constant.

We also use the same notation for the function E : M → R defined by

pulling back Mabuchi energy from H → R via the map M → H which

sends h 7→ i
2π Fh.

Mabuchi energy has the following important properties.

Proposition 5.7.

1. The critical points of E : M → R are precisely those h for which ωh has

constant scalar curvature.

2. The Hessian of E at h is given by

D∗D : C∞(X, R) → C∞(X, R)

where the operator D and its adjoint are computed with respect to ωh.

It follows that E is convex along geodesics. Moreover, if there are no holo-

morphic vector fields on X which lift to L then E is strictly convex along

geodesics, except for those which correspond to scaling h by a constant.
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3. Let v be a holomorphic vector field with lift v̂ to L and write ft : L → L for

the flow of v̂. Put ht = f ∗t h. Then

d

dt
E(ht) = Im F(v)

One thing that is immediately suggested by this result is that, at least when

there are no infinitesimal automorphisms of L → X outside of the scalars,

there is at most one constant scalar curvature metric in c1(L) is unique.

To see why this should be the case, assume there were two such metrics

ω0, ω1 ∈ H. In finite dimensions, any two points in a negatively curved

symmetric space are joined by a unique geodesic. In infinite dimensions

this is no longer automatic—geodesics are the solutions to PDEs rather

than ODEs and so their existence is more subtle. However, assuming for

the moment that ω0 and ω1 are joined by a geodesic, the restriction of

E to this geodesic is both strictly convex and has critical points at each

ωi. Hence we arrive at a contradiction unless ω0 = ω1. The hard part

to making this argument rigorous is proving the existence of the geodesic.

This was first achieved by X.-X. Chen [9], with sufficient regularity to carry

through the above outline of a proof.

Exercises 5.2.

1. Prove Lemma 5.5.

2. Prove Proposition 5.7.

5.3 From geodesics to test configurations

The next thing that this result suggests is that it should be possible to

ascertain whether or not there is a constant scalar curvature metric in c1(L)

by looking at the behaviour of E at infinity. At least in finite dimensions,

a convex function has a minimum if and only if it is proper, i.e., it tends

to infinity at infinity. To investigate the behaviour of E at infinity, imagine

picking a base point h ∈ M and a geodesic γ : [0, ∞) → R starting at h

and heading in the direction u ∈ ThM. Restricting E to the geodesic gives

a convex function f = E ◦ γ : [0, ∞) → R which tends to infinity precisely

when lim f ′ > 0 as t → ∞. In this way one is lead to the idea that the

existence of a constant scalar curvature Kähler metric in c1(L) should be

equivalent to lim f ′ > 0 for all u ∈ ThM. (The problem with taking such a

statement literally is that it presupposes the existence of geodesics leaving

h in all directions and existing for all times, something which is known

not to be true.)
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The Yau–Tian–Donaldson conjecture has at heart the idea that the limits

lim f ′ have a purely algebro-geometric interpretation, related to the Futaki

invariant. To understand this, we first need to explain how to convert a

path of Kähler metrics ωt on a fixed complex manifold (X, J) to a path of

complex structures Jt on a fixed symplectic manifold (X, ω). The key to

this is the following lemma.

Lemma 5.8. Given a function ψ : X → R on a Kähler manifold (X, ω, J),

i∂̄∂ψ = L∇ψω

Because of this, given a path of Kähler metrics ωt = ω0 + i∂̄∂φ, we can

define a path of vector fields, vt by

vt = ∇ωt φ̇

and integrate this to a path ft : X → X of diffeomorphisms. By construc-

tion, ωt = f ∗t ω0 and so we can think of the path of metrics as being defined

by a fixed symplectic form ω0 and a path Jt = ( f−1
t )∗ J of complex struc-

tures. The point here is that whilst for each finite t the complex structures

Jt and J0 are equivalent (they are related by the diffeomorphism ft) in the

limit t → ∞, this need no longer be the case. One should imagine that,

in the case ωt is a geodesic, the complex manifolds (X, Jt) undergo a de-

generation of some sort in the limit t → ∞, whose behaviour encodes the

derivative of E in this direction, in a sense to be made precise.

Recall above we interpreted a geodesic in M as a family of metrics on

X parametrised by C∗, (with trivial S1-dependence). Switching point of

view, we can think instead of a family X ′ → C∗ of complex manifolds.

Moreover, the path of diffeomorphisms generated by vt = ∇ωt φ̇ gives

a C∗-action on X ′ covering the action by multiplication on the base C∗.

Changing coordinate z 7→ 1/z in C∗, so that t → ∞ corresponds to z → 0,

we see that our hoped for degeneration amounts to filling in the family

X ′ → C∗ to a family X → C.

One situation in which this can be done explicitly is when the geodesic

in M comes from a geodesic in G/K, where K is the isometry group of

(X, J, ω). Such a geodesic corresponds to a 1-parameter subgroup C∗ ⊂ G

and hence a holomorphic vector field v on X. Tracing through the details,

one finds that the family is holomorphically trivial X = X × C, but with

a non-trivial action, generated by v + z∂z. Notice that in this case lim f ′ is

precisely the Futaki invariant of v, i.e., of the C∗-action on the central fibre

of X .

Returning to the general discussion, we suppose family X ′ → C∗ can be

filled in to X → C in such a way that the C∗-action extends to to X (just

34



as happened for a geodesic arising from a holomorphic vector field on X).

Then the action will necessarily fix the central fibre X0 over 0 ∈ C. This

means that one can take the Futaki invariant F of the action on X0 and it is

this which should correspond to lim f ′, just as was the case for a geodesic

defined by a holomorphic vector field. (Note that in general the central

fibre can be singular and so here we need to use the generalised Futaki

invariant, which makes sense for C∗-actions on polarised schemes. This

also requires that the action lifts to the polarisation L → X, which we have

ignored in our above discussion.)

The above discussion is meant to be taken with a pinch of salt. It’s main

point is to motivate the following definitions.

Definition 5.9. Let L → X be a positive line bundle over a compact com-

plex manifold. A test configuration for L → X is the following data:

1. A scheme X , the total space of a flat family π : X → C, together with

a C∗-action on X , making π equivariant with respect to the action

by multiplication on C.

2. A polarisation L → X together with a lift of the C∗-action to a linear

action on L.

3. An isomorphism between the fibre L1 → X1 of L → X over 1 ∈ C

and Lr → X, where r is a positive integer, called the exponent of the

test configuration.

A product configuration is one of the form L × C → X × C with a product

C∗-action, namely one generated by v+ z∂z, where v generates a C∗-action

on (L, X).

Definition 5.10. TheFutaki invariant of a test configuration (L,X ), is the

Futaki invariant of the C∗-action on the central fibre L0 → X0 of X over

0 ∈ C.

Definition 5.11. A polarised complex manifold L → X is called K-stable

if the Futaki invariant of every test configuration is non-negative and is

equal to zero if and only if the configuration is a product.

For a while it was believed that K-stability was a necessary and sufficient

condition for the existence of a constant scalar curvature metric in c1(L).

Indeed this conjecture went by the name of the Yau–Tian–Donaldson con-

jecture. (Yau first suggested the existence of a Kähler–Einstein metric on

a Fano manifold should be equivalent to “some notion of stability in the
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sense of geometric invariant theory” [49]. This was later refined to a pre-

cise statement by Tian [46], for Kähler–Einstein metrics and then Donald-

son [16] for metrics of constant scalar curvature.) However, recent devel-

opments have led to the realisation that for this to be true, the definition

of K-stability given immediately above must be modified slightly.

The first development was an example found by Apostolov–Calderbank–

Gauduchon–Tønnensen-Friedman [1], of a manifold which does not admit

a constant scalar curvature metric and yet for which the obvious attempt

to build a destabilising test configuration leads to a limit of test configu-

rations in which one must take successively higher and higher exponents.

Intuitively, one might think that the test configurations as described above

probe a dense subset of the directions at infinity in M, but to obtain in-

formation about all the directions, one should take limits of test configu-

rations too.

The second development was the discovery by Li and Xu [27] that it is

possible to build test configurations which are “trivial in codimension 2”

but not products, which none-the-less have zero Futaki invariant. One

should also adjust the definition to disregard these test configurations.

An approach to both of these problems has been recently suggested by

Székelyhidi [42]. He embeds the space of test configurations in a larger

ambient space—filtrations on the ring
⊕

H0(X, Lk)—where one can take

limits. Filtrations have a natural norm and he includes this norm together

with the Futaki invariant in the definition of K-stability. This also seems to

deal with the problem of Li and Xu’s test configurations which have norm

zero and so are automatically disregarded by the theory. Unfortunately we

do not have the time here to go into the details of Székelyhidi’s approach.

In one direction, and under certain hypotheses, the Yau–Tian–Donaldson

conjecture is known to be true. Stoppa [41, 40] proved that when X admits

no holomorphic vector fields and c1(L) contains a constant scalar curva-

ture Kähler metric, then (X, L) is K-stable with respect to all test configu-

rations which are non-trivial up to codimension 2. The converse direction

is still open. (In the Kähler–Einstein case, where L = K∗ is the anticanon-

ical bundle, the conjecture has been proved in complex dimension 2 by

Tian [45].)
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6 Projective embeddings and the theorems of Kodaira

and Tian

We now change subject and leave behind for a while the problem of find-

ing canonical Kähler metrics. Instead we focus on one of the main sources

of examples of Kähler metrics, namely projective geometry, and the com-

plex submanifolds X ⊂ CPN . It is natural to ask if a given Kähler manifold

can be realised as a projective submanifold and, if so, how many Kähler

metrics can be got via such embeddings and the restriction of the ambient

Fubini–Study metric? We will address both these questions in this section.

6.1 Line bundles and maps to projective spaces

To construct a map from X to projective space we begin with a holomor-

phic line bundle L → X and a linear subspace V ⊂ H0(X, L) of holomor-

phic sections (which in later uses we will typically take to be the whole

space). Such a V determines a map to projective space in the following

way.

Let s0, . . . , sd be a basis of V and define the map f : X → CPd by

f (x) = [s0(x) : · · · : sd(x)]

There are two things to mention here. Firstly, the sj(x) are not, as the

notation here suggests, genuine complex numbers, rather they are all el-

ements in the same complex line Lx, the fibre of L over x ∈ X. In order

to make sense of the above expression, one must first choose an isomor-

phism Lx
∼= C, under which the sj(x) ∈ Lx are now identified with com-

plex numbers s′j(x) ∈ C say. The point is that if one chooses a different

isomorphism between Lx and C, the sj(x) become identified with different

elements s′′j (x) ∈ C but since the two different identifications of Lx with

C differ simply by multiplication by some α ∈ C \ 0, these new elements

are related to the old ones by s′′j (x) = αs′j(x) for all j and hence the corre-

sponding point in projective space is unchanged. This is what is meant by

the above map.

The second thing to say is that it is possible that f is not defined at all

points of X, namely if all sections in V vanish at some x, then f will not

be defined there.

Definition 6.1. Given a holomorphic line bundle L → X and a subspace

V ⊂ H0(X, L), the set B of common zeros of sections of V is called the

base locus of V. Given a basis s0, . . . , sd of V, there is a well defined map

f : X \ B → CPd, called the map corresponding to the linear system V.
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When B = ∅, one says that V is base point free.

Finally, when V is the whole space of sections, one calls V the complete

linear system of L.

There is a more invariant way of defining the map f which does not in-

volve the choice of a basis. To see this, notice that evaluation at a point

x ∈ X defines a linear map evx : V → Lx. Picking an identification Lx
∼= C

we identify evx with an element in V∗. Changing the identification Lx
∼= C

scales this element of V∗ by a non-zero constant and so, at least assuming

evx is not identically zero, we obtain a well-defined element of P(V∗).

Definition 6.2. Given a holomorphic line bundle L → X and a subspace

V ⊂ H0(X, L) there is a canonically defined map, f : X \ B → P(V∗),
called the map corresponding to the linear system V.

When L is base point free, so that the map f is defined on all of X, one

can recover the line bundle L from the map.

Lemma 6.3. Given a line bundle L → X which is base point free, with corre-

sponding map f : X → P(H0(X, L)∗), there is a natural identification between

L and the pullback f ∗O(1) of the hyperplane bundle.

(Recall that the hyperplane bundle O(1) → CPd is defined as the dual of

the tautological bundle O(−1).)

Examples 6.4.

1. We begin with a tautological example. Recall that an element of

O(−1) is a line in Cd+1 together with a point on that line. From here

it is easy to write down sections of O(1): any element s of the dual

vector space (Cd+1)∗ restricts to a linear map on each line in Cd+1 and

hence each fibre of O(−1), giving a holomorphic section of O(1). It

is not too difficult to check that all holomorphic sections of O(1)

arise this way. The map corresponding to the complete linear system

CPd → P((Cd+1)∗)∗) just amounts to the natural identification of

the double dual with the original vector space.

2. More interesting examples are provided by taking powers O(1)⊗k =
O(k) of the hyperplane bundle. A holomorphic section of O(1) was

just seen to be an element of (Cd+1)∗, i.e., a homogeneous linear

polynomial in n + 1 variables. In a similar way, a holomorphic sec-

tion of O(k) is a homogeneous polynomial of degree k in d + 1 vari-

ables. It can be checked that space of such polynomials has dimen-

sion Nk,d = (k+d)!
k!d! . Since there is no point of Cd+1 at which all such
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polynomials vanish, the base locus of the complete linear system is

empty and we get a map CPd → CPNk,d−1, called the Veronese embed-

ding. It is not difficult to check that this is indeed an embedding.

Exercises 6.1.

1. Prove Lemma 6.3.

2. You will need to know the Riemann–Roch theorem on curves to do

this question.

(a) Prove that for a compact curve of genus at least 2, the com-

plete linear system of the canonical bundle is base point free. In

other words, there is no point at which all holomorphic 1-forms

vanish.

(b) From the previous part, we see that every compact curve Σ of

genus at least 2 comes with a canonically defined map Σ →
CPg−1. Prove that one of two things happens. Either this map

is an embedding, or it factors through a double cover Σ → CP1

composed with the Veronese embedding CP1 → CPg−1.

6.2 Kodaira’s theorem on projective embeddings

(For an alternative approach to Kodaira embedding see the books of Grif-

fiths and Harris [21] or Huybrechts [24].)

Heuristically at least, the more holomorphic sections one has, the better

the chances of the base locus vanishing or, even better, the corresponding

map being an embedding. One way to increase the number of sections is

to take powers of L. Every section s of L defines a section sk of Lk, but in

general one might hope that there are more sections of Lk than just these.

Definition 6.5. A holomorphic line bundle L → X is called very ample

if the complete linear system H0(X, L) defines an embedding of X into

projective space.

A line bundle L is called ample if Lk is very ample for all large k.

Theorem 6.6 (Kodaira). A line bundle is ample if and only if it is positive.

Recall that L is positive if it admits a positive Hermitian metric, i.e., one

for which i
2π F is a Kähler form. In one direction Kodaira’s theorem is

obvious: if f : X → CPd is a projective embedding, the pull back of the

Fubini–Study metric on f ∗O(1) is positively curved. So if L is ample, Lk

is positive for some large k, and the kth root of that positive metric in Lk is
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a positive metric in L. The hard part of the theorem is the converse, that

positivity implies ampleness. We now sketch a proof of this.

The rough idea is that given x ∈ X, as k becomes large we can find holo-

morphic sections of Lk which are more and more concentrated at x. This

means, in particular, there is a section which is non-zero there. More-

over, the sections concentrated near x and near y suffice to distinguish the

images of x and y under the map to projective space.

More precisely we will sketch a proof of the following fact.

Theorem 6.7 (Existence of peaked sections). Let x ∈ X and write Vx ⊂

H0(X, Lk) for the subspace of all sections vanishing at x.

1. For all large k, Vx has codimension 1.

2. Write sk,x for a generator of the L2-orthogonal complement of Vx, with unit

length in L2. Then

(a) |sk,x(x)|2 = kn + O(kn−1)

(b) for y 6= x, |sk,x(y)| = O(k−∞)

(Here O(k−∞) means a quantity f (k) which decays quicker than any poly-

nomial).

(The ideas behind this result go back to Hörmander. They were first im-

plemented in this context by Tian [44]. Many details on this construction

can be found in the book of Ma and Marinescu [31].)

Before outlining the proof of Theorem 6.7 let us sketch why this proves

Kodaira’s theorem. Firstly, the fact that Vx has codimension 1 is equivalent

to saying that the base locus of Lk is empty, so we have a well defined map

X → P(H0(X, Lk)∗). We next need to check that this is an embedding.

We will settle for seeing that is an injection, namely that if x, y are distinct

then there is a section which vanishes at x but not at y. To do this consider

sk,x and sk,y. Since sk,x(x) 6= 0, we can find a ∈ C such that ask,x + sk,y

vanishes at x. But this section can’t vanish at y since |sy,k|
2(y) = O(kn)

whilst |sk,x(y)| = O(k−∞).

6.3 Existence of peaked sections

We now focus on the proof of Theorem 6.7. We will first produce a section

s′k,x of Lk which has the properties listed in part 2. This will in particular

imply part 1. The properties of part 2 essentially imply that s′k,x converges

to sk,x in C∞ as k → ∞ from which it follows that this section also enjoys
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all the properties of part 2. We will thus concentrate just on producing

a section s′k,x which satisfies the conclusions of part 2. (In fact, this is

enough to prove Kodaira’s theorem, we will only need the part about L2-

orthogonality later.)

We begin by considering the Euclidean case. We take for L the trivial

bundle C × Cn together with the metric h(z) = e−π|z|2 . This has curvature

Fh = −π∂̄∂|z|2 = π ∑ dzj ∧ dz̄j. The corresponding real (1, 1)-form is

ω = i
2π Fh = ∑ dxj ∧ dyj, which is of course the standard flat metric on Cn.

Now we consider Lk which is again, of course, trivial, but inherits the

metric hk = e−kπ|z|2 . In other words, the “constant” section, i.e., the section

which takes the value 1 in the trivialisation of Lk, has length e−kπ|z|2 . We

normalise this section by scaling it to have unit L2-norm (with respect to

the standard flat metric on Cn). This gives, for each k, a section sk of Lk

whose point-wise norm is

|sk(z)|
2 = kne−kπ|z|2 .

As k → ∞, these Gaussian distributions converge to a Dirac delta cen-

tred at the origin. Notice that sk certainly satisfies the conclusions of the

theorem concerning peaked sections.

Next, return to the general case of a positively curved line bundle L → X.

Pick a point x and a small ball B containing it over which L is trivial. Over

B, the geometry of (X, Lk, hk, kω) becomes closer and closer to the flat

model (the metric kω is close to flat when k is large). With this in mind

we try to glue in the model peaked section from the above discussion. To

do this we use a cut-off function in Cn and the resulting section s̃k,x of

Lk is no longer holomorphic: it is holomorphic in the middle of B, zero

outside of B and ∂̄s̃k,x is supported in an annulus in B. Moreover, because

the Euclidean model agrees very closely with the geometry of Lk → X the

“error” ∂̄s̃k,x is small, in say L2.

We now need to know how to correct this error and adjust s̃k,x to a gen-

uine holomorphic section without destroying its “peaked” nature. We will

solve

∂̄ fk = −∂̄s̃k,x

and then set sk,x = s̃k,x + fk. But of course we want fk to be as small as

possible (certainly not, for example, just −s̃k,x which would leave us with

the zero section!).

To do this we use something called “Hörmander’s technique” which cen-

tres on the Bochner identity which we explain next. Recall that we defined

the ∂- and ∂̄-Laplacians on a Hermitian manifold and saw that when the
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metric was Kähler they were equal. We can do the same for forms with

values in a holomorphic Hermitian vector bundle (E, h). The Chern con-

nection ∇ splits as ∂ = π1,0 ◦ ∇ and ∂̄ = π0,1 ◦ ∇. (This second of course

does not depend on the choice of metric h, but the first operator does.) We

write Λ : Ωp,q → Ωp−1,q−1 for the adjoint to wedge product with ω.

Theorem 6.8 (Bochner, Kodaira, Nakano). Let E → X be a holomorphic Her-

mitian vector bundle over a Kähler manifold. Then the ∂- and ∂̄-Laplacians on

E-valued forms are related by

∆∂̄ = ∆∂ + [iF, Λ]

where F is the curvature of the Chern connection in E.

This is proved via twisted versions of the Kähler identities, just as in the

case of the two Laplacians acting on functions. At some point in the proof,

one needs to commute two derivatives which explains the presence of the

curvature F in the formula.

We will ultimately be interested in (0, q)-forms with values in Lk (such

as ∂̄s̃k), but to get there via the Bochner–Kodaira–Nakano identity stated

above we will use a trick and consider instead the line bundle K∗ ⊗ Lk.

The point is that an (n, q)-form with values in K∗ ⊗ Lk is the same thing as

a q-form with values in Lk.

Now K∗ ⊗ Lk has curvature

F = −2πikω − iρ

where ρ is the Ricci form of X. On (p, q)-forms, one checks directly that

[ω, Λ] = p + q − n

where n = dim X. It follows that on (n, q)-forms with values in K∗ ⊗ Lk,

or equivalently, on (0, q)-forms with values in Lk,

∆∂̄ = ∆∂ + 2πqk + [ρ, Λ].

Now ∆∂ is semi-positive and [ρ, Λ] is independent of k. Hence there is a

constant C such that for all f ∈ Ω0,q(X, Lk),

〈∆∂̄ f , f 〉L2 ≥ (2πqk − C) ‖ f‖2
L2

This is the fundamental inequality with the following immediate conse-

quences
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Theorem 6.9 (Kodaira vanishing and the spectral gap). Let L → X be a

positive line bundle. There is a constant C such that for all q > 0 and all suf-

ficiently large k, the lowest eigenvalue ν of ∆∂̄ acting on Ω0,q(X, Lk) satisfies

ν ≥ 2πqk − C.

In particular ∆∂̄ is invertible for large k and hence Hq(X, Lk) = 0 for all q > 0.

(This is known as Kodaira’s vanishing theorem.)

Moreover, the first non-zero eigenvalue µ of the operator ∆∂̄ acting on sections of

Lk satisfies µ ≥ 2πk − C.

The bound on ν follows from that on µ since if ∆∂̄ f = λ f for λ 6= 0

and f ∈ Ω0(X, Lk), then ∂̄ f ∈ Ω0,1(X, Lk) is non-zero and so again an

eigenvector of ∆∂̄ with eigenvalue λ.

From here we can deduce Hörmander’s estimates for solutions of the ∂̄-

equation:

Theorem 6.10 (Hörmander’s estimate). For all large k, given g ∈ Ω0,1(X, Lk)
with ∂̄g = 0 then there is a section f ∈ Ω0(X, Lk) such that

∂̄ f = g

Moreover there is a constant C, independent of g such that the above solution

satisfies ‖ f‖L2 ≤ Ck−1‖g‖L2 .

To see this note that ∂̄∗g is automatically orthogonal to ker ∂ which is

precisely where we can invert ∆∂̄. Set f = ∆−1
∂̄
(∂̄∗g). Then ∂̄ f = g since

∂̄g = 0 implies that ∆∂̄g = ∂̄∂̄∗g. Finally the estimate on ‖ f‖L2 follows

from the lower bound on the first non-zero eigenvalue of ∆∂̄ on sections

proved above.

Return now to our goal of producing a section s′k,x of Lk peaked at a

point x, in the sense that it has all the properties listed in part 2 of

Theorem6.7. Recall that we began by gluing in a peaked section using

the Euclidean model to obtain a section s̃k,x with ‖∂̄s̃k,x‖L2 = O(1). Now

apply Hörmander’s estimate to obtain a solution to ∂̄ fk = −∂̄s̃k,x with

‖ fk‖L2 ≤ Ck−1. Setting s′k,x = s̃k,x + fk we obtain a holomorphic section of

Lk which is very close to the glued in Gaussian when k is large, at least

initially L2. To get better control of the adjustment in fk one needs to use

standard elliptic estimates for ∆∂̄ to pass from L2 to Ck. We do not give

the details here.

Now s′k,x is non-zero at x (it is of order kn even) and so the subspace

Vx ⊂ H0(X, Lk) of sections vanishing at x is indeed of codimension 1.

Moreover, whilst s′k,x is not quite L2-orthogonal to Vx it is asymptotically
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so as k → ∞, because it’s mass in L2 is localised at x. From here one can

finish the proof of Theorem 6.7 by projecting s′k,x to V⊥
x .

Exercises 6.2.

1. Let E → X be a Hermitian holomorphic vector bundle over a Kähler

manifold. We write ∂E and ∂̄E for the (1, 0) and (0, 1)-components

respectively of the Chern connection on E. We also write L(α) =
ω ∧ α for the operation of wedging with the Kähler form.

Prove the twisted Kähler identities:

[∂∗E, L] = −i∂̄E, [∂̄∗E, L] = i∂E

2. Starting from the twisted Kähler identities, prove the Bochner–Kodaira–

Nakano identity, Theorem 6.8 above.

3. Recall L : Ωp,q → Ωp+1,q+1 is the operation of wedging with ω, whilst

Λ : Ωp,q → Ωp−1,q−1 is its adjoint.

Prove that on (p, q)-forms [L, Λ] = p + q − n.

4. Prove that if L is a positive line bundle and p+ q > n then Hp,q(X, L) =

0. (This is called Nakano’s vanishing theorem.)

6.4 Tian’s theorem on projective embeddings

Let L → X be a positive line bundle. We are interested in the space H of

all Kähler metrics in c1(L). By Kodaira’s theorem, high powers Lk give rise

to embeddings into projective spaces P(H0(X, Lk)∗). If we choose a basis

of H0(X, Lk) we can identify with a “standard” projective space CPdk and

pull the Fubini–Study metric. This gives a metric 1
k f ∗ωFS ∈ c1(L). (The

rescaling is necessary since the unscaled metric lies in c1(Lk) = kc1(L)).

Varying the basis will, in general, give different metrics. The linear group

GL(dk + 1, C) acts transitively on the set of all bases and two choices de-

termine the same metric if and only if they are related by an element of

U(dk + 1). It follows that using embeddings via Lk to produce metrics in

yields a subset Bk ⊂ H,

Bk
∼= GL(dk + 1, C)/ U(dk + 1)

where dk + 1 = dim H0(X, Lk).

Definition 6.11. The subset Bk ⊂ H is called the kth Bergman space and

its element are called Bergman metrics at level k.
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A natural question is whether or not the Bergman spaces fill out all of H

in the limit as k → ∞. This is part of the content of Tian’s theorem, which

we will state shortly. In fact the theorem says more, given ω ∈ H, it gives a

systematic way to construct a sequence ωk ∈ Bk of Bergman metrics which

converge to ω as k → ∞.

To construct ωk, first let h be a Hermitian metric in L with curvature F =

−2πiω. (This determines h up to multiplication by a constant, which will

not change the end result.) Each space of sections H0(X, Lk) comes with

an L2-innerproduct. Choosing an orthonormal basis gives a projective

embedding and hence a metric ωk got by rescaling the restriction of the

Fubini–Study metric. Choosing a different orthonormal basis corresponds

to a unitary transformation of projective space which doesn’t change the

resulting metric.

So there is a canonical sequence ωk ∈ Bk associated to any point ω ∈ H.

Theorem 6.12 (Tian [44]). Given any ω ∈ H, ωk → ω as k → ∞.

(Tian proved convergence in C2, which was improved to C∞ by Ruan [38].)

To prove this we first introduce something called the Bergman function,

βk : X → R. For each k, let s0, . . . sdk
be an orthonormal basis for H0(X, Lk).

Then set

βk(x) =
dk

∑
j=0

|sj(x)|2

One checks that this function does not depend on the choice of scale for h

nor on the choice of orthonormal basis. It depends solely on ω and k. It

can be thought of as a measure of how spread out the sections of Lk are

over the manifold. The interest for us is that βk determines the difference

of ω and ωk:

Lemma 6.13. ωk = ω + i
k ∂̄∂ log βk

This is a simple calculation based on the definition of the Fubini–Study

metric. From here we see that Tian’s theorem amounts to the statement

that βk is asymptotically constant. But in fact, we have (more-or-less!)

proved this already during our discussion of Kodaira’s theorem.

Theorem 6.14 (Tian, Ruan). The function βk has the property that

βk(x) = kn +O(kn−1)

as k → ∞. More precisely, for any r there is a constant C such that

‖1 − k−nβk‖Cr ≤ Ck−1

for all large k.
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To see why this should be true, pick x ∈ X and let the first element s0

in the basis be the section peaked at x provided by Theorem 6.7. Since

the L2-orthogonal space to s0 consists of sections vanishing at x, we have

that βk(x) = |s0(x)|2 = kn +O(kn−1). (We admittedly haven’t been precise

enough in our discussion above to see that this holds in Cr.)

Now log βk = n log k + log(k−nβk) and so ‖ log βk − n log k‖Cr ≤ Ck−1 for

some constant C. From here it follows that

‖ωk − ω‖Cr−2 ≤ Ck−2

which implies Tian’s theorem.

Exercises 6.3.

1. Show that the Bergman function βk(x) = ∑ |sj(x)|2 depends only on

ω and not on the metric h or the choice of orthonormal basis sj.

2. Prove Lemma 6.13.

6.5 Toeplitz quantisation and the derivative of Tian’s theorem

The passage from positively curved metrics h ∈ M to embeddings or,

equivalently projective metrics in Bk is called “quantisation”. There are a

variety of different ways in which one can make this vague idea precise.

Fix a positively curved metric h in L with Kähler form ω. First we explain

the reason for the name. As we have seen, given x ∈ X, it is possible to find

L2-unit norm holomorphic sections sk,x of Lk for which |sk,x |
2 conveges to a

Dirac delta at x. One is supposed to think of H0(X, Lk) as the space of wave

functions describing a quantum system on X; as k → ∞ the probability

density |sk,x |
2 localises at a point and so the quantum system is converging

to a classical one: 1/k plays the rôle of Planck’s constant and k → ∞ is the

classical limit. From this point of view, the Bergman function ∑ |sj|
2 can be

seen as a “density of states” function; it is proportional to the probability

density for the location of any one of the states represented by elements of

H0(X, Lk). Tian’s theorem βk ∼ kn says that in the classical limit the states

are spread evenly over the whole manifold.

Toeplitz quantisation is an attempt to use this picture to turn classical

observables, i.e., real functions f ∈ C∞(X, R), into quantum observables,

i.e., Hermitian operators on H0(X, Lk) with its L2-innerproduct. This is

done by sending f to the operator Tf defined by

Tf (s) = Π( f s)
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where Π : Γ(X, Lk) → H0(X, Lk) is L2-orthogonal projection from L2-sections

onto the holomorphic sections. More generally, one can see Tf as acting

on general L2-sections:

Tf (s) = Π( f Π(s)).

It is straightforward to write down a kernel for Π and hence Tf . Let sj be

an L2-orthonormal basis of H0(X, Lk). Then

Π(s) = ∑

(∫

X
(s, si)

ωn

n!

)
si

The kernel of Π is a section of a certain line bundle E → X × X. Here,

X is the complex manifold obtained by reversing the complex structure

on X (using −J rather than J). The line bundle L → X got by revers-

ing the fibre wise complex structure on L is again holomorphic; now we

put E = (L
k
)∗ ⊠ Lk, where the notation means that tensor product where

the first bundle is pulled back via projection onto the first factor and the

second bundle from the second factor. Now the kernel of Π is the sec-

tion Bk(x, y) = ∑ si(x)∗ ⊗ si(y) of E, where s∗ denotes the section of (L
k
)∗

which is metric dual to k. The word “kernel” here signifies that

Π(s)(y) =
∫

X
Bk(x, y) (s(x))

ωn

n!

which is just a rewriting of t the formula above. One important thing to

notice is that on the diagonal of X × X the bundle E is naturally trivi-

alised and so sections become identified with functions X → C. From this

point of view, the restriction to the diagonal of Bk is simply the Bergman

function: βk(x) = Bk(x, x).

Definition 6.15. The section Bk(x, y) = ∑ si(x)∗⊗ si(x) is called the Bergman

kernel of Lk.

From here it is straightforward to write down an integral kernel for Tf too.

The kernel of a composition is the composition of the kernels, from which

see that

Kk( f ; x, y) = ∑
i,j

∫

X
si(x)∗ ⊗ sj(y) f (z)(si(z), sj(z))

ωn
z

n!

is a kernel for Tf (where ωn
z indicates that the integration is taken with

respect to the z-variable in the integrand).

There are a variety of things which need to be checked to see that the map

f 7→ Tf merits the name “quantisation”. The first of these (and the only

which we will focus on) is that in the classical limit Tf converges back to

f . This amounts to the fact that the restriction to the diagonal Kk( f ; x, x)
of the kernel converges, up to scale, to f :
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Theorem 6.16. There is an asymptotic expansion as k → ∞:

∑
i,j

∫

X
f (y)(si, sj)(x)(sj, si)(y)

ωn
y

n!
= kn f + O(kn−1)

For a proof see, for example, [30]. When f = 1 the quantity in this theorem

is simply βk and so this result is a generalisation of the expansion of the

Bergman function.

Just as the Bergman function has a significance in Kähler geometry, via

Tian’s theorem, Theorem 6.16 can be seen as describing the derivative of

Tian’s theorem. To see this we first introduce some notation. Write B̃k

for the space of Hermitian innerproducts on H0(X, Lk). There is a map

B̃k → Bk to the space of projective embeddings we considered earlier, by

using an orthonormal basis to embed. Two innerproducts give the same

embedding only if they are multiples of each other. This is analogous to

the map M → H sending a positively curved metric to its corresponding

Kähler form. Now we write Hilbk : M → B̃k for the map which sends a

positively curved metric h to the corresponding L2-innerproduct. We write

FSk : B̃k → M for the map which sends a Hermitian innerproduct to the

positively curved metric got by pulling back the Fubini–Study metric via

an orthonormal basis of sections and then taking the kth root. Finally we

write Φk : M → M for the composition Φk = FSk ◦Hilbk. Tian’s theorem

says that Φk(h) → h as k → ∞. We will now explain that the derivative of

Φk converges to the identity.

Given a function φ, consider the path h(t) = e2πφth0 of positively curved

metrics, and write fk(t) : X → CPdk for the path of embeddings given by

taking an L2(h(t)-orthonormal basis of Lk. We write

∂

∂t

∣∣∣∣
t=0

Φk(h(t)) = F

for some function F = dΦk(φ) which we must compute.

The derivative of the embedding fk corresponds to a holomorphic vector

field on CPdk and hence an endomorphism of Cd+1. If we write si for an

L2(h(0)-orthonormal basis, the endomorphism giving f ′k(0) is

Aij =
∫

X
(2πkφ + ∆φ) (si, sj)

ωn

n!

where the 2πkφ term accounts for the change in the fibrewise metric in Lk

and the ∆φ term accounts for the change in volume form.

Now, given an endomorphism A of Cd+1, the change in the Fubini–Study

metric given by flowing it along the corresponding vector field on CPd
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is i∂̄∂ Tr(Aµ). (Recall that µ : CPd → Herm(Cd+1) is the map sending a

line to the endomorphism given by orthogonal projection onto that line.)

Applying this to the above A, we see that the effect of changing h by the

infinitesimal Kähler potential φ is, at t = 0, given by F = 1
2πk Tr(Aµ) and

so

F = ∑
i,j

∫

X

(
φ +

1

2π
∆φ

)
(y)(si, sj)(y)

(sj, si)(x)

βk(x)

ωn
y

n!

(We have used here the expression µij =
(si,s j)

βk
.) Using the expansion of βk

and Kk( f ; x, x) we see that F = φ +O(k−1). We conclude that

Proposition 6.17. The derivative dΦk : C∞(X, R) → C∞(X, R) converges point-

wise to the identity as k → ∞.

(This was presumably well know to experts for longer but, to the best of

my knowledge, it first appeared explicitly in [18].)

From this point of view, one can think of the map Hilbk : M → B̃k as

giving a “curved” version of Toeplitz quantisation, the derivative at h

of which is, to leading order, the usual Toeplitz quantisation as defined

above. We also have the map FSk : B̃k → M in the opposite direction and

Tian’s theorem and its derivative tell us that the composition FSk ◦Hilbk

conveges pointwise to the identity in the classical limit k → ∞.

We have seen above that the problem of finding a “best” point in M—

a metric of constant scalar curvature—can be formulated in terms of a

geodesically convex function Mabuchi energy. We will next explain the

“quantised” problem, of finding a best point in B̃k (or, equivalently in Bk)

and the corresponding geodesically convex function.

7 Balanced embeddings and Luo–Zhang’s theorem

In this section we will discuss “best” projective embeddings which are

projectively equivalent to a given one X ⊂ CPd. We will approach this in

such a way as to highlight as much as possible the analogies with Calabi’s

suggestion of extremal metrics being best representatives of a given Kähler

class. The ideas here are due to Luo [29] and Zhang [51], see also the

earlier work of Bourguinon–Li–Yau [4].

7.1 Balanced embeddings and balancing energy

Fix a Hermitian innerproduct on Cd+1. Throughout this and subsequent

sections we will make use of an embedding µ : CPd → Herm(Cd+1) of
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projective space into the Euclidean space of Hermitian endomorphisms of

Cd+1. We think of Herm(Cd+1) as a Euclidean vector space via the inner-

product (A, B) = Tr(AB). To define µ we send a point p ∈ CPn to the

endomorphism of Cn+1 which is orthogonal projection onto the line corre-

sponding to p. It is straightforward to check that this is equivariant with

respect to U(d + 1). This means that the Euclidean metric on Herm(Cd+1)
restricts to give a U(d + 1)-invariant metric on CPd and this is one way of

defining the Fubini–Study metric. If we identify i Herm(Cd+1) ∼= u(d + 1)
and u(d + 1)∗ via the inner-product it is not hard to see that the map µ is

essentially the moment map for the action of U(n+ 1) on CPd, embedding

it as a coadjoint orbit.

Now, given a complex submanifold X ⊂ CPd we can think of X as a subset

of Herm(d + 1) and ask for its centre of mass. We set

µ̄(X) =
∫

X
µ

ωn
FS

n!

where n = dim X and ωFS is the restriction of the Fubini–Study metric

to X. Our goal will be adjust X ⊂ CPd via projective transformations in

order to make µ̄(X) as small as possible.

Lemma 7.1. Let X ⊂ CPd be a complex submanifold of dimension n and degree

D. Then

Tr(µ̄(X)2) ≥
D2

(d + 1)n!

with equality if and only if µ̄(X) is a multiple of the identity.

Definition 7.2. A complex submanifold for which µ̄ is a multiple of the

identity is called balanced.

So we would like to understand when X ⊂ CPd can be moved via a

projective transformation to a balanced submanifold. To understand this

problem note that it is invariant under the action of U(d + 1), i.e., if X

is balanced so is g(X) for any g ∈ U(d + 1). Moreover, Tr(µ̄(g(X))2) =
Tr(µ̄(X)2). So we consider the space B ∼= PGL(d + 1, C)/ PU(d + 1) =

SL(d + 1, C)/ SU(d + 1) of projective embeddings of X modulo unitary

equivalence. Notice that B is a non-positively curved symmetric space. For

future use we recall that the geodesics in B are the images of 1-parameter

subgroups of SL(d + 1, C).

There is a natural energy function F : B → R, which plays the role of

Mabuchi energy in this setting. To define it fix a projective submanifold

X ⊂ CPd and let gt ∈ GL(d + 1, C) be a path of automorphisms with
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g0 = id and g1 = g. According to the decomposition gl(d + 1, C) =

u(d + 1) + Herm(Cd+1), write

g−1
t g′t = ut + ht

where ht ∈ Herm(Cd+1). Then set

F(g(X)) =
∫ 1

0
Tr (htµ̄(gt(X))) dt

As the notation suggests this quantity does not depend on gt, merely on

g(X). In fact, it depends only on [g] ∈ PGL(d + 1, C)/ PU(d + 1) = B and

so gives a well defined function F : B → R.

Definition 7.3. F : B → R as defined above is called the balancing energy.

Balancing energy enjoys the same sorts of properties that Mabuchi energy

does.

Proposition 7.4.

1. The critical points of F : B → R are precisely the balanced embeddings.

2. F is convex along geodesics. The null-directions of the Hessian of F at [g]
are those holomorphic vector fields on CPd which are tangent to g(X).

Unlike in the case of Mabuchi these calculations actually lead directly to

proofs, since B is a finite dimensional symmetric space, unlike the infinite

dimensional H.

Proposition 7.5. Let X ⊂ CPd. Suppose that there are no non-zero holomorphic

vector fields on CPn which are tangent to X.

1. There is at most one [g] ∈ B for which g(X) is balanced.

2. There exists [g] ∈ B for which g(X) is balanced if and only if

lim
t→∞

Tr
(

Aµ̄(etA(X))
)
> 0

for all A ∈ Herm(Cd+1).

Notice that this last limit is precisely the limit t → ∞ of the derivative of

F along the geodesic in B generated by A.
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7.2 The Chow form and the Chow weight

Luo–Zhang’s theorem identifies the limit appearing in Proposition 7.5

with a certain quantity appearing in algebraic geometry, known as the

Chow weight. To define this weight we will need a slight digression on

the Chow form.

The fundamental idea is that one would like a nice space whose points

represent the complex submanifolds of CPd modulo projective equiva-

lence. We begin by considering the submanifolds directly, not identifying

projectively equivalent ones. If we are interested in hypersurfaces, it is

straightforward to describe them. A degree m hypersurface X is the zero

locus of a section s of O(m) and s is uniquely determined by X up to

multiplication by a non-zero constant. We see then that the space of hy-

persurfaces of degree m is simply P(H0(CPd,O(m))).

The Chow form is a way of turning a submanifold of arbitrary codimen-

sion into a hypersurface in a Grassmanian, where one can then apply the

same idea. To do this take a submanifold X ⊂ CPd of codimension r + 1.

This means that a generic r-dimensional plane will not meet X but that

a 1-parameter family of such planes will meet X. In other words, the

subspace

{V ∈ Gr(r, d + 1) : P(V) ∩ X 6= ∅}

defines a hypersurface in Gr(r, d + 1), called the Chow form CX of X. For

different X with the same degree m, the Chow forms CX are all zero loci for

sections of the same line bundle, Lm → Gr(r, d + 1). Thus the Chow forms

of such X define a subset C ′ ⊂ P(H0(Gr, Lm)) and the closure of the set of

all Chow forms is the Chow variety C. One should think of C = C(d, m, r)
as parametrising all degree m codimension r complex subvarieties of CPd.

When we want to discuss subvarieties modulo projective equivalence, we

should divide out by the action of G = PGL(d+ 1, C) on the Chow variety.

Of course, we can simply consider the topological space C/G, but this will

not be a nice space: since G is not compact, C/G will not be Hausdorf, let

alone carry some nice structure, like that of an algebraic variety.

Geometric invariant theory is designed to resolve this problem. We will

describe this extremely briefly here and refer the interested reader to other

texts for more information (such as Richard Thomas’s excellent notes [43]

or the seminal book [35] by Mumford, Fogarty and Kirwan). Put briefly,

we will exclude certain orbits of G and once this is done the remaining

orbits will give a “nicely behaved” quotient C//G.

The first thing to note is that the action of G on C ⊂ P(H0(Gr, Lm)) lifts to

the hyperplane line bundle E → C. The G-invariant sections of the powers
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Ek should correspond to the coordinate ring of the quotient C//G that we

are seeking. An orbit of G is represented in C//G precisely when there

is a G-invariant section of Ek for some k, which is non-zero on the orbit.

Such orbits are called semi-stable. To distinguish one orbit from another

in the quotient we really need a section which vanishes on one but not

on the other. If the closures of two semi-stable orbits meet then this will

not be possible. When this happens we call the orbits equivalent. The

quotient, whose co-ordinate ring is precisely
⊕

H0(C, Ek)G, is then the set

of equivalence classes of semi-stable orbits.

Of course, our ultimate goal was to find a quotient who’s points repre-

sented orbits, not just equivalence classes of orbits. This is possible for

a dense open set, the so-called stable orbits. An orbit G · x is stable if⊕
H0(C, Ek)G separates orbits near G · x. In other words, given an invari-

ant section s which does not vanish on G · x we work on the affine part

U = {s 6= 0} of C. Here E is trivialised by s and so we can think of sections

as simply functions. We ask that for any other orbit G · y in U there is an

invariant section taking different values on x and y. We also require this

infinitesimally. I.e., for every tangent vector v ∈ TxC/Tx(G · x) there is an

invariant section whose derivative is non-zero in the direction v.

Write Cs and Css for the stable and semi-stable points. There is then a map

Css → C//G which factors through the quotient Cs/G and over the stable

locus Cs this map is precisely the quotient map. Indeed, our definitions are

precisely those required to make this true. What really matters is that there

is a nice characterisation of the stable points, called the Hilbert–Mumford

criterion, which explains geometrically for which orbits our quotient is

simply the topological quotient.

To describe this we pick a C∗-subgroup of G and then take the limit x0 of

λ · x in C as λ → 0. Since C∗ fixes x0 it must act on the fibre of Ex0 at x0

and so we can associate to it an integer weight, called the Chow weight of

x with respect to the C∗-action.

Theorem 7.6 (The Hilbert–Mumford criterion). The point x is stable if and

only if the Chow weight of x is strictly positive for all subgroups C∗ ⊂ G.

7.3 Luo–Zhang’s theorem

We now come to Luo–Zhang’s theorem, which amounts to identifying the

limit

lim
t→∞

Tr
(

Aµ̄(etA(X))
)
> 0

with the Chow weight of X with respect to the one parameter subgroup

of G generated by A. This yields the following result, which can be con-
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sidered as a “baby” version of the Yau–Tian–Donaldson conjecture:

Theorem 7.7 (Luo, Zhang). Let X ⊂ CPd and suppose that the only holomor-

phic vector field on CPd which is tangent to X is the zero vector. Then there exists

g ∈ GL(d + 1, C) such that g(X) is balanced if and only if X is Chow stable.

To get a better feeling for this, begin by taking the limit inside the trace.

Define

XA = lim
t→∞

etA(X)

This is simply the limit point denoted x0 in the preceding section. It is

sometimes a relatively straightforward procedure to visualise XA.

For the sake of argument, we suppose that the eigenvalues of A are dis-

tinct. Then the flow on CPd generated by A fixes exactly d + 1 points,

corresponding to the eigendirections of A. We label then p0, p1, . . . , pd in

increasing order of the corresponding eigenvalues. The generic points of

CPd are pushed towards pd under the flow of A. The only points for

which this is not the case are those on the hyperplane p⊥d spanned by

p0, . . . , pd−1. This hyperplane is invariant under the flow of A, the generic

points being pushed towards pd−1, with the exceptions all lying on the

codimension 2 plane p⊥d ∩ p⊥d−1. Continuing in this way we can give a

complete description of the flow generated by A.

Next we must understand what happens to X ⊂ CPd under this flow.

Assume first that X is a curve of degree m. There are thus m points in

X ∩ p⊥d and away from these points the whole curve is sent to pd in the

limit t → ∞. These m points, however, will have a different limit, namely

pd−1, at least in the generic case. So for generic choice of A, XA will be m

copies of the linear CP1 joining pd and pd−1. For higher dimensional X,

one can certainly end up with more complicated limits, but one thing will

be true: XA will be a union of complex subvarieties of the same dimension

as X which are invariant under the flow of A.

Now that we have an idea of the limit XA, we must compute Tr(Aµ̄(XA))
and it turns out that this is exactly the Chow weight. This calculation is

the fundamental contribution of Luo and Zhang.

8 Canonical metrics and balanced embeddings

We now come to the fundamental observation of Donaldson [15, 17], that

balanced embeddings are the quantisation of constant scalar curvature

Kähler metrics.
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8.1 Donaldson’s theorem

We begin by stating Donaldson’s result.

Theorem 8.1 (Donaldson [15]). Let L → X be an ample line bundle. Assume

that Aut(X, L)/C∗ is discrete. Suppose moreover that c1(L) contains a constant

scalar curvature metric ω. Then for all large k there is a basis of holomorphic

sections of Lk yielding a balanced embedding fk : X → CPdk . Moreover, setting

ω̃k =
1
k f ∗k ωFS we have ω̃k → ω in C∞ as k → ∞.

There are two immediate consequences of Donaldson’s theorem:

1. The constant scalar curvature metric in c1(L) is unique, since for each

large k the balanced metric ω̃k is unique.

2. By Luo–Zhang’s theorem, we see that for large k the ample line bun-

dle Lk → X gives a Chow stable embedding of X. This can be seen as

a partial version of one half of the Yau–Tian–Donaldson conjecture:

existence of a constant scalar curvature metric implies a certain kind

of stability, namely asymptotic Chow stability.

Whilst the proof of Donaldson’s theorem is technically quite intricate, the

underlying idea is relatively straightforward to explain. It hinges on the

following characterisation of balanced metrics.

Definition 8.2. A Kähler metric ω in c1(L) is called balanced if it is of

the form 1
k f ∗ωFS where f ∗ is a balanced embedding given by a basis of

holomorphic sections of Lk.

Proposition 8.3. A metric ω is balanced via Lk if and only if its Bergman func-

tion βk(ω) is constant.

Proof. Suppose that βk is constant. We write ωk =
1
k f ∗ωFS for the projective

metric determined by an L2-orthonormal basis of holomorphic sections of

Lk. Recall that in general

ω = ωk −
i

k
∂̄∂ log βk

Since βk is constant we see that ω = ωk and so ω is induced by a projective

embedding via a L2-orthonormal basis.

Now, recall the map µ : CPd → Herm(Cd+1) given by sending a line to the

orthogonal projection onto that line. In unitary homogeneous coordinates

x0, . . . , xd, one has that the components of µ are

µ[x0, . . . , xd]ij =
xi x̄j

∑ |xl |2

55



and so given X ⊂ CPd,

µ̄(X)ij =
∫

X

xi x̄j

∑ |xl |2
ωn

FS

n!
.

We need to check that if s0, . . . , sd are an L2-orthonormal basis of sections

of Lk, and when βk is constant, this matrix is a multiple of the identity.

But this is almost immediate. By homogeneity of the integrand, we can

use any innerproduct on the fibre of Lk
x to compute the numerator and

denominator; we choose here to use the metric hk whose curvature is kω.

Now the above formula reads

µ̄ij =
∫

X

(si, sj)(x)

∑ |sl(x)|2
ωn

FS

n!
.

The denominator of the integrand is just βk, which is a constant, moreover

ωFS = kω and the si are L2-orthonormal with respect to this volume form.

So

µ̄ = ckn
∫

X
(si, sj)

ωn

n!
= cknδij

as required.

Conversely, suppose that ω is induced via an embedding coming from

a basis s0, . . . , sd of holomorphic sections of Lk. One can check that the

induced Fubini–Study metric on Lk is characterised, up to scale, by the

condition that ∑ |sj|
2 = 1. Note that this is not in general the same as

the Bergman function since we have used an arbitrary basis here, not an

L2-orthonormal basis. However, if the embedding is actually balanced,

then

cδij =
∫

X
(si, sj)

ωn

n!

for some constant c, and so the basis becomes orthonormal after multpilca-

tion by an appropriate constant. This simply rescales the function ∑ |sj|
2

which is thus constant. Hence if s0, . . . , sd gives a balanced embedding

with induced metric ω then βk(ω) is a constant function.

Now recall in our discussion of Tian’s theorem that we showed

βk(ω) = kn +O(k−n).

In other words, to leading order βk is constant. The key fact we need now

is that the next order term in this expansion is given by the scalar curvature.

Various authors have computed the second (and even third) terms in this

expansion, using a variety of methods, giving the following result. For

an approach which can also be applied when one twists L by an auxiliary

Hermitian vector bundle and also works in the purely symplectic case, see

the book of Ma and Marinescu [31].
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Theorem 8.4 (Catlin [8], Lu [28], Zelditch [50]). The Bergman function βk

enjoys the following asymptotic expansion:

βk = kn + S(ω)kn−1 +O(kn−2)

There is a heuristic explanation for why the scalar curvature should fea-

ture, which was told to me by Richard Thomas. Recall that in the proof

that the leading term is kn, we installed a “peaked section” at each point

x ∈ X. To see what happens at the next order, we must investigate how

closely together we can put two peaked sections before they “interfere”

with each other. Each peaked section is localised in a region of volume of

the order k−n, since each is modelled on a Gaussian of standard deviation

k−1/2. So the question now becomes how much volume is available in a

small geodesic ball Br(x) of radius r centred on x ∈ X? To leading order

in r the answer is equal to the Euclidean volume whilst the next order

correction is given by the scalar curvature S(x) at x.

The upshot is that if ω has constant scalar curvature, then for large k, the

Bergman function βk(ω) is constant to one higher order than in general.

The next step in the proof is to adjust ω to a metric of the form ω′
k =

ω + i
k ∂̄∂φ in order to make βk(ω

′
k) constant to O(kn−3). To do this one first

notes that

S(ω′
k) = S(ω) + k−1D(φ) +O(k−2)

where D is the linearisation of the map φ 7→ S(ω + i∂̄∂φ). When S(ω) is

constant, recall that this is simply the operator D(φ) = D∗Dφ. Now, by

the above expansion of the Bergman function:

βk(ω
′
k) = kn + S(ω)kn−1 + (A +D∗D(φ))kn−2 +O(kn−3)

where A is the coefficient of the kn−2-term in the expansion of βk(ω).

(Strictly speaking here, one must use the fact that the Bergman expansion

is uniform in the metric ω provided it varies in a set which is compact in

the C∞-topology, which is certainly the case for our metrics ω′
k).

We now choose φ to solve

D∗Dφ = A − Ā

where Ā is the mean value of A. This can be done because the hypothesis

that Aut(X, L)/C∗ be discrete says that the kernel of D∗D is precisely

the constants hence, by the Fredholm alternative for self-adjoint elliptic

operators, D∗D is surjective onto functions of mean value zero.

So we have a metric ω′
k with βk(ω

′
k) a constant up to order kn−3. We

can now repeat the trick, adding a potential of the form k−2φ, to make
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the kn−3-coefficient constant and so on, showing that for any m there is a

sequence of metrics ω̂k with βk(ω̂k) constant up to order k−m.

The final and most difficult part of the proof is to show that for some suf-

ficiently large choice of m, the approximately balanced metrics ω̂k can be

perturbed to genuinely balanced metrics ω̃k. To do this, Donaldson con-

siders the downward gradient flow of the balancing energy Fk starting at

each ω̂k. The key is to prove the the first nonzero eigenvalue λ1 of the

Hessian of Fk remains uniformly bounded below along the flow. This im-

plies that the flow converges exponentially fast to a balanced embedding.

(Notice that if there is no balanced embedding, the flow tends to infin-

ity in a direction in which Fk becomes asymptotically linear, and hence

the first eigenvalue of its Hessian tends to zero.) In his article Donaldson

proves uniform control of the order λ1 > Ck−4 which was subsequently

improved to λ1 > Ck−2 by Phong and Sturm [36], a result shown to be op-

timal in [19]. It is this negative power of k which forces one to consider the

iteratively defined sequence ω̂k of approximately balanced embeddings

described above.

Exercises 8.1.

1. Let s0, . . . , sd be a basis of holomorphic sections of a very ample line

bundle L → X, giving a projective embedding f . Prove that the

induced Fubini–Study metric hFS on L ∼= f ∗O(1) is characterised by

the equation ∑ |sj(x)|2hFS
= const.

2. Prove that a metric h ∈ M is balanced if and only if it is a fixed point

of the map Φk = FSk ◦Hilbk : M → M.

3. Prove that the kernel of D∗D is canonically isomorphic to the Lie

algebra of Aut(X, L), the group of biholomorphisms L → L which

take fibres linearly to fibres.

8.2 Balancing flow and Calabi flow

Donaldson’s theorem can be paraphrased as saying that the critical points

of the balancing energies Fk converge to a critical point of Mabuchi energy

E (assuming one exists). We will now state a result which says the same

for their gradient flows.

The downward gradient flow of Mabuch energy is called Calabi flow,

∂ω

∂t
= i∂̄∂S(ω).

58



This flow was first introduced by Calabi [6] as a tool to study extremal

Kähler metrics (before Mabuchi’s energy functional was known!) As is

clear from the definition, fixed points of Calabi flow are the metrics of

constant scalar curvature. It is an exercise to show that the solitons for

this flow are precisely the extremal Kähler metrics.

Despite its elegant description as a gradient flow, very little is known about

Calabi flow. The flow is parabolic and so short time existence is standard.

It is also known that if a Kähler class κ contains a constant scalar curvature

metric ω and if X has no nonzero holomorphic vector fields, then provided

the flow is started sufficiently close in κ to ω it will exist for all time and

converge to ω exponentially fast (proved by X.-X. Chen and W. He [11]).

For a compact Riemann surface, Chrusciel [12] proved that the flow exists

for all time and converges to the constant curvature metric (see also the

exposition of Chen [10]).

The downward gradient flow of balancing energy is called balancing flow. It

can be described succinctly as follows. Let f : X → CPd be a holomorphic

embedding and write µ̄( f ) ∈ Herm(Cd+1) for the corresponding “centre

of mass” of f (X). Endomorphisms of Cd+1 induce holomorphic vector

fields on CPd. Given A ∈ Herm(Cd+1) we write vA for the corresponding

vector field on CPp. Now balancing flow takes the form

d f

dt
= −vµ̄( f ) ◦ f

(To interpret this equation note that an infinitesimal change in the embed-

ding f is given by a tangent vector field of CPd defined over the image of

f . The right-hand-side is exactly the vector field vµ̄( f ) restricted to f (X).)

So balancing flow uses the centre of mass of f (X) to deform the embed-

ding f through projectively equivalent embeddings in an attempt to arrive

at a balanced one. In contrast to Calabi flow, it is straightforward to see

that balancing flow always accomplishes its goals: it exists for all time;

it converges as t → ∞ if and only if a balanced embedding exists and

in this case its limit is the balanced embedding; if there is no balanced

embedding the flow converges to a geodesic at infinity along which the

derivative of balancing energy is negative, demonstrating the Chow insta-

bility of the original embedding. All of these things follow more-or-less

immediately from the fact that balancing flow is the downward gradient

flow of a geodesically convex function on a (finite dimensional) symmetric

space. Naı̈vely, one might hope that the analogous statements are true for

Calabi flow.

In this section we will explain a result which says, roughly, that the bal-

ancing flow converges to Calabi flow. To be more precise, fix a metric ω in
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c1(L) and write ω(t) for the Calabi flow starting at ω. Next, write ωk for

the kth projective approximation to ω as in Tian’s theorem, induced via an

embedding fk : X → CPdk given by an L2-orthonormal basis of sections of

Lk. We evolve fk via balancing flow, scaled in time by a factor of k, i.e., let

fk(t) solve
d fk

dt
= −k2vµ̄( fk) ◦ fk, fk(0) = fk

and set ωk(t) = 1
k fk(t)

∗ωFS to be the induced flow of projective metrics.

Then we have the following result

Theorem 8.5 (Fine [18]). The balancing flow at time t, converges to Calabi flow

at time t, i.e., ωk(t) → ω(t) in C∞, for as long as Calabi flow exists. The

convergence is also C1 in t.

The proof is similar to that of Donaldson’s theorem. One first applies

Tian’s construction to Calabi flow to obtain a flow ω′
k(t) of projective

metrics which is O(k−1) from balancing flow, measured in the natural

symmetric metric on Bk. One then carries out successive adjustments to

Calabi flow, just as in Donaldson’s theorem, to obtain for each m a flow

ω̂(t) which when one applies Tian’s construction gives a sequence of flows

ω̂k(t) ∈ Bk which are O(k−m) from balancing flow (again in the natural

symmetric metric on Bk). To do this one solves at each step the parabolic

analogue of the elliptic equation which arose in Donaldson’s case:

∂φ

∂t
−D∗Dφ = A

This explains why we do not need the additional hypothesis that the group

Aut(X, L)/C∗ be discrete, which was essential for Donaldson’s theorem:

to solve an elliptic equation one must work orthogonal to the kernel, but

there is no obstruction to the solution of a parabolic equation (the kernel

of D∗D simply gives rise to linearly increasing terms, rather than expo-

nentially decaying ones).

The final step in the proof is to make precise how the symmetric metric in

Bk controls the Cr-distance between metrics. This can be done uniformly

in k, provided one considers only certain subsets of Bk for each k. See [18]

for the details.

Exercises 8.2.

1. Let ω be an extremal Kähler metric, with v = ∇S the extremal vector

field. Write ft for the 1-parameter group of diffeomorphisms gener-

ated by v. Prove that f ∗t (ωt) solves Calabi flow.
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Conversely, suppose that v is a holomorphic vector field (i.e., a real

vector field with Lv J = 0) generating a 1-parameter group ft such

that f ∗t (ω) solves Calabi flow. Prove that ω is extremal and v = ∇S.

2. Prove that Calabi energy C(ω) =
∫

X
S(ω)2 ωn

n! is decreasing along

Calabi flow, strictly so unless the flow is a soliton.

3. There is a 1-form α on M defined at h ∈ M by

αh(ψ) =
∫

X
ψ∆S

ωn

n!

where ∆ and S are defined with respect to h.

Prove that when n = 1, this form is closed.

(Its integral is called Liouville energy, and is clearly decreasing un-

der Calabi flow. This additional fact, special to dimension 1, is in

part responsible for the simpler nature of Calabi flow on Riemann

surfaces.)

8.3 The Hessians of Mabuchi and balancing energy

Recall that the Hessian of Mabuchi energy E : M → R is the endomor-

phism C∞(X, R) → C∞(X, R) given by

(Hess E)h( f ) = D∗D f .

We next describe the Hessian of balancing energy. Write B̃k for the space

of Hermitian innerproducts on H0(X, Lk). At least for large k, an element

H ∈ B̃k determines an embedding X → CPdk given by an H-orthonormal

basis. The balancing energy of this embedding then defines a function

Fk : B̃k → R which we also call balancing energy.

To give a formula for the Hessian of Fk we need some more notation. Given

H, we write E → X for the normal bundle of the embedding X → CPd

(strictly speaking E depends on the choice of H-orthonormal basis but this

will not affect the end result). We write π : TCPd|X → E for the projection

map and we equip E with the Hermitian metric induced by the Fubini–

Study metric. Finally we give Γ(X, E) the L2-innerproduct defined by the

Hermitian metric in E and the volume form on X induced by the Fubini–

Study metric and the projective embedding.

Now, THB̃k = Herm(H0(X, Lk)) (where Hermitian on the right-hand-side

means with respect to H). By choosing an H-orthonormal basis we iden-

tify H0(X, Lk) ∼= Cdk+1 and THB̃k
∼= Herm(Cd+1). Hence A ∈ THB̃k is a
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Hermitian matrix which defines a holomorphic vector field vA on CPdk

and so vA|X can be thought of as an infinitesimal deformation of the em-

bedding of X. (This is simply the derivative of the map from Hermitian

innerproducts to projective embeddings.) We define

Pk : THB̃k → Γ(X, E)

by Pk(A) = π(vA|X). Then the Hessian of balancing energy is the endo-

morphism of THB̃k = Herm(H0(X, Lk) given by

(Hess Fk)H(A) = P∗
k Pk(A)

where the adjoint of Pk is defined with respect to the Killing form (A, B) =
Tr(AB) on the domain and the L2-innerproduct on the range.

The results we will explain in this section can be summarised by the slogan

“P∗
k Pk → D∗D as k → ∞.” There are a variety of ways to give precise

sense to this, the first being the following. Recall the map Hilbk : M → B̃k

which sends a positively curved metric h in L to the corresponding L2-

innerproduct on H0(X, Lk). Using the derivative of this map we can pull

back P∗
k Pk to an endomorphism on C∞(X, R).

Theorem 8.6 (Fine, [19]). Fix f , g ∈ ThM = C∞(X, R) and write A f ,k, B f ,k ∈

THilbk(h)B̃k for their images under the derivative of Hilbk. Then there is an asymp-

totic expansion

Tr
(

A f ,kP∗
k PkB f ,k

)
= kn

∫

X
fD∗Dg

ωn

n!
+O(kn−1)

where D∗D is defined with respect to ω = ωh.

In fact the convergence of the Hessians is much more precise: the eigenval-

ues and eigenvectors of P∗
k Pk converge. Write

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · ·

for the eigenvalues of D∗D written in order and with multiplicites. Sim-

liarly, let

0 = νk,0 ≤ νk,1 ≤ νk,2 ≤ · · · ≤ νk,(dk+1)2

for the eigenvalues of P∗
k Pk, again in order and with multiplicities.

Theorem 8.7 (Fine, [19]). Assume that Aut(X, L)/C∗ is discrete. Then for each

j = 0, 1, . . . , there is an aysmptotic expansion

νj,k = k−2λj +O(k−3).
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Next we consider the eigenspaces. Let p, q be such that

λp−1 < λp = λp+1 = · · · = λq < λq+1

Write V ⊂ C∞(X, R) for the λp-eigenspace of D∗D. Let Wk ⊂ THilbk(h)B̃k

denote the span of the eigenspaces of P∗
k Pk with eigenvalue νk,j with p ≤

j ≤ q. Note that by Theorem 8.7, for large k, dim Wk = q − p = dim V.

Finally write V ′
k ⊂ C∞(X, R) for the image of Wk under the derivative of

FSk.

Theorem 8.8 (Fine [19]). Assume that Aut(X, L)/C∗ is discrete. Then, when

suitably scaled the images under d FSk of the eigenspaces of P∗
k Pk converge iso-

metrically to those of D∗D. More precisely, with the notation of the previous

paragraph,

• The map dFSk : Wk → V ′
k is O(k−1) from an isometry with respect to the

innerproduct (A, B) = k−n Tr(AB) on the domain and the L2-innerproduct

on the range.

More precisely, there is a constant C such that for all A, B ∈ Wk,

|〈HA, HB〉L2 − kn Tr(AB)| ≤ Ckn−1 Tr(A2)1/2 Tr(B2)1/2

where HA = d FSk(A) = 1
k Tr(Aµ).

• Let φ ∈ V and let Ak ∈ Wk denote the point with HA nearest to φ as

measured in L2. Then

‖HAk
− φ‖2

L2
2
= O(k−1)

and this estimate is uniform in φ if we require in addition that φ be unit

length in L2.

We finish by describing one potential application of this result. Suppose

that we are in the situation of Donaldson’s theorem, that Aut(X, L)/C∗ is

discrete and that c1(L) contains a constant scalar curvature Kähler metric.

Then for all large k there is a balanced metric Hk ∈ B̃k and FSk(Hk) → h

where ωh is the constant scalar curvature metric. Let h0 be any starting

point in M and consider the Calabi flow h(t) starting at h0. We know

this exists for short time and it is expected, although a completely open

problem to prove, that the flow should exist for all time and converge to

h in the limit. Now, write Hk(0) = Hilbk(h0) and Hk(t) for balancing flow

starting at Hk(0), which exists for all time. Since there is a balanced metric

Hk, we know that Hk(t) → Hk as t → ∞, and that FSk(Hk) → h. We

also know that for small values of t, where Calabi flow is known to exists,

63



FSk(Hk(t)) → h(t). One might hope to prove long time existence of the

Calabi flow by extending the convergence “at infinity” of the balancing

flows to finite times.

A first step in this direction would be to show convergence of the final

directions. For each k, there is a tangent vector Vk ∈ THk
B̃k giving the

direction in which the balancing flow arrives, Moreover, Vk is an eigendi-

rection for the Hessian of balancing energyFk at Hk. (This is because the

flow is the downward gradient flow of Fk.) Now, a consequence of the

above results is that the eigendirections of (Hess Fk)Hk
converge, under

d FSk, to the eigendirections of D∗D (see [19] for a proof). So one might

hope to be able to show that d FSk(Vk) converged to give a ray in ThM. If

this worked, one would know the final direction of the Calabi flow, even

though its long time existence remains to be proved.

Exercises 8.3.

1. Prove that Hess Fk = P∗
k Pk.
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